This study compares the kinetics of crystal growth of indomethacin from supersaturated suspensions at varying degrees of supersaturation (2 ≤ S ≥ 9) in the presence of seed crystals of the γ-form of indomethacin, the lowest energy polymorph. At high S (6 ≤ S ≥ 9), the crystal growth was first order with rate coefficients (kG ) that were nearly constant and consistent with the value predicted for bulk-diffusion control. At lower S (<6), kG values were significantly smaller, decreasing approximately linearly with a decrease in S. The decline in kG at low S was attributed to a prolonged period during the initial stages of crystal growth in which surface integration was rate limiting. The apparent solubility of indomethacin after crystal growth for 3 days increased by ∼1.6-fold at both low (S = 2) and high (S = 6) degrees of supersaturation suggesting that a higher energy surface layer was deposited on the γ-form seed crystals during crystal growth. When growth experiments were repeated at low S in the presence of indomethacin seed crystals isolated from a previous crystal growth experiment (i.e., seed crystals having higher energy surface), kG matched the higher values observed for bulk diffusion-controlled crystal growth. Crystal growth experiments were also conducted at S < 1.6 using a constant infusion of an indomethacin solution in the presence of γ-form seed crystals to obtain kG under conditions where deposition of a higher energy surface could not occur. At these conditions, the smaller value of kG indicative of surface integration control was again observed and the apparent solubility of indomethacin after crystal growth matched that of the γ-form. A quantitative mechanistic understanding of the crystal growth kinetics of indomethacin derived from experiments at high and low S may be useful in future studies aimed at understanding the inhibitory effects of pharmaceutical excipients on the crystal growth of poorly soluble compounds and their utility in maintaining drug supersaturation during oral absorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23498 | DOI Listing |
STAR Protoc
January 2025
Department of Molecular Medicine, University of Pavia, Pavia, Italy. Electronic address:
Voltage-dependent anion channel 1 (VDAC1) is a key protein in cellular metabolism and apoptosis. Here, we present a protocol to express and purify milligram amounts of recombinant VDAC1 in Escherichia coli. We detail steps for a fluorescence polarization-based high-throughput screening assay using NADH displacement, along with procedures for thermostability, fluorescence polarization, and X-ray crystallography.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India.
Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA. Electronic address:
Starch spherulite is a unique form of resistant starch characterized by a spherical structure with crystalline lamellae that are radially oriented and may find applications in delivery of nutrients and bioactives to the lower gastrointestinal tract. Formation of starch spherulites generally requires heating to a high temperature followed by quenching and long crystallization time. The objectives of this study were to gain a deeper understanding of the factors influencing spherulite formation from pea starch (PS) and high-amylose maize starch (HAMS) and investigate if spherulites could be formed by a slow cooling rate and determine the crystalline structure and morphology of the spherulites formed.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.
Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!