Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-013-1864-6DOI Listing

Publication Analysis

Top Keywords

drought stresses
16
receptor-like cytoplasmic
12
salt drought
12
expression levels
12
glycine soja
8
gsrlck
8
tolerance salt
8
receptor protein
8
protein kinases
8
protein kinase
8

Similar Publications

Exploring the efficacy of drought tolerant, IAA-producing plant growth-promoting rhizobacteria for sustainable agriculture.

Plant Signal Behav

December 2025

Laboratory of Research and Teaching in Animal Health and Biotechnology, Bobo-Dioulasso, Burkina Faso.

The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics.

View Article and Find Full Text PDF

Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψ) to assess the impacts of stress timing on drought resilience in Scots pine saplings.

View Article and Find Full Text PDF

Arabidopsis glycosyltransferase UGT86A1 promotes plant adaptation to salt and drought stresses.

Physiol Plant

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.

UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses.

View Article and Find Full Text PDF

Melatonin is considered an effective bio-stimulant that is crucial in managing several abiotic stresses including drought. However, its potential mechanisms against drought stress in fragrant roses are not well understood. Here, we aim to investigate the role of melatonin on plants cultivated under drought stress (40 % field capacity) and normal irrigation (80 % field capacity).

View Article and Find Full Text PDF

Jujube (Ziziphus ujuba Mill.) holds great importance as a fruit tree in China, with strong tolerance to drought and saline stress, but its growth is limited by vulnerability to cold stress. Consequently, the role of MAPK cascades in mediating jujube cold stress response remains unclear, with the specific function of ZjMAPKK4 in this context yet to be fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!