Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Non-photochemical fluorescence quenching (NPQ) is mainly associated with the transthylakoid proton gradient (ΔpH) and xanthophyll cycle. However, the exact mechanism of NPQ is different in different oxygenic photosynthetic organisms. In this study, several inhibitors were used to study NPQ kinetics in the sea ice alga Chlamydomonas sp. ICE-L and to determine the functions of ΔpH and the xanthophyll cycle in the NPQ process. NH4Cl and nigericin, uncouplers of ΔpH, inhibited NPQ completely and zeaxanthin (Z) was not detected in 1 mM NH4Cl-treated samples. Moreover, Z and NPQ were increased in the samples containing N,N'-dicyclohexyl-carbodiimide (DCCD) under low light conditions. We conclude that ΔpH plays a major role in NPQ, and activation of the xanthophyll cycle is related to ΔpH. In dithiothreitol (DTT)-treated samples, no Z was observed and NPQ decreased. NPQ was completely inhibited when NH4Cl was added suggesting that part of the NPQ process is related to the xanthophyll cycle and the remainder depends on ΔpH. Moreover, lutein and β-carotene were also essential for NPQ. These results indicate that NPQ in the sea ice alga Chlamydomonas sp. ICE-L is mainly dependent on ΔpH which affects the protonation of PSII proteins and de-epoxidation of the xanthophyll cycle, and the transthylakoid proton gradient alone can induce NPQ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00792-013-0532-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!