Characterization of voltage-sensitive dyes in living cells using two-photon excitation.

Methods Mol Biol

Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA.

Published: August 2013

In this protocol, we describe the procedures we have developed to optimize the performance of voltage-sensitive dyes for recording changes in neuronal electrical activity. We emphasize our experience in finding the best dye conditions for recording backpropagating action potentials from individual dendritic spines in a neuron within a brain slice. We fully describe procedures for loading the dye through a patch pipette and for finding excitation and emission wavelengths for the best sensitivity of the fluorescence signal to membrane voltage. Many of these approaches can be adapted to in vivo preparations and to experiments on mapping brain activity via optical recording.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-62703-345-9_11DOI Listing

Publication Analysis

Top Keywords

voltage-sensitive dyes
8
describe procedures
8
characterization voltage-sensitive
4
dyes living
4
living cells
4
cells two-photon
4
two-photon excitation
4
excitation protocol
4
protocol describe
4
procedures developed
4

Similar Publications

Introduction: A healthy young woman, age 26 without prior cardiac complications, experienced an out-of-hospital cardiac arrest caused by ventricular fibrillation (VF), which coincided with a fever. Comprehensive diagnostics including echo, CMR, exercise testing, and genetic sequencing, did not identify any potential cause. This led to the diagnosis of idiopathic VF and installment of an implantable cardioverter defibrillator, which six months later appropriately intervened another VF episode under conditions comparable to the first event.

View Article and Find Full Text PDF

Numerical model for electrogenic transport by the ATP-dependent potassium pump KdpFABC.

Biophys Rep (N Y)

September 2024

Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York. Electronic address:

In vitro assays of ion transport are an essential tool for understanding molecular mechanisms associated with ATP-dependent pumps. Because ion transport is generally electrogenic, principles of electrophysiology are applicable, but conventional tools like patch-clamp are ineffective due to relatively low turnover rates of the pumps. Instead, assays have been developed to measure either voltage or current generated by transport activity of a population of molecules either in cell-derived membrane fragments or after reconstituting purified protein into proteoliposomes.

View Article and Find Full Text PDF

Extended voltage imaging in cardiomyocytes with a triplet state quencher-stabilized silicon rhodamine.

Bioorg Med Chem Lett

September 2024

Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA; Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-1460, USA. Electronic address:

Voltage imaging of cardiac electrophysiology with voltage-sensitive dyes has long been a powerful complement to traditional methods like patch-clamp electrophysiology. Chemically synthesized voltage sensitive fluorophores offer flexibility for imaging in sensitive samples like human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), since they do not require genetic transformation of the sample. One serious concern for any fluorescent voltage indicator, whether chemically synthesized or genetically encoded, is phototoxicity.

View Article and Find Full Text PDF

Biological membrane potentials, or voltages, are a central facet of cellular life. Optical methods to visualize cellular membrane voltages with fluorescent indicators are an attractive complement to traditional electrode-based approaches, since imaging methods can be high throughput, less invasive, and provide more spatial resolution than electrodes. Recently developed fluorescent indicators for voltage largely report changes in membrane voltage by monitoring voltage-dependent fluctuations in fluorescence intensity.

View Article and Find Full Text PDF

Introduction: Membrane potential (), the voltage across a cell membrane, is an important biophysical phenomenon, central to the physiology of cells, tissues, and organisms. Voltage-sensitive fluorescent indicators are a powerful method for interrogating membrane potential in living systems, but most indicators are best suited for detecting changes in membrane potential rather than measuring values of the membrane potential. One promising approach is to use fluorescence lifetime imaging microscopy (FLIM) in combination of chemically synthesized dyes to estimate a value of membrane potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!