Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have performed liquid state ("Overhauser") Dynamic Nuclear Polarization (DNP) experiments at high magnetic field (9.2 T, corresponding to 260 GHz EPR and 400 MHz (1)H-NMR resonance frequency) on aqueous solutions of (14)N-TEMPOL nitroxide radicals. Integrated signal enhancements exceeding -80 were observed for the water protons at microwave superheated temperatures (160 °C) and still -14 at ambient temperatures (45 °C) relevant to biological applications. Different contributions contributing to the DNP enhancement such as saturation factor, leakage factor and sample temperature under microwave irradiation could be determined independently for a high spin concentration of 1 M, allowing the calculation of the coupling factors as a function of temperature and a quantitative comparison of this parameter with values derived from field dependent relaxation measurements or predictions from MD simulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp44461a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!