Phenobarbital use in an infant requiring extracorporeal membrane life support.

J Anaesthesiol Clin Pharmacol

Department of Anesthesiology, The Ohio State University, Columbus, Ohio, USA.

Published: January 2013

Over the past two decades, there has been an increased use of extracorporeal membrane life support (ECLS) for critically ill neonates and infants. Approximately 20% of these children will experience seizures as a complication of ECLS or the comorbid condition which necessitated extracorporeal support. While phenobarbital is one of the most common drugs used to treat seizures in children, little is known about its dosing while on ECLS. We present a 3-month-old girl who required ECLS after cardiac arrest in the postoperative period following surgery for complex congenital heart disease. The patient subsequently developed seizure activity, which was treated with phenobarbital. Following an initial loading dose of 30 mg/kg, the serum concentration was 47.9 mcg/ml. A supplementary loading dose of 10 mg/kg was administered 8 h later with an increase of the maintenance dose to 8 mg/kg/day. The phenobarbital serum concentrations were 65.9 and 72.8 mcg/ml on the subsequent days. Despite therapeutic levels of phenobarbital, the patient continued to exhibit clinical and electroencephalographic evidence of seizure activity and a midazolam infusion was started at 0.3 mg/kg/h. Because of continued seizure activity, the patient ultimately required titration of midazolam to 1.2 mg/kg/h by day 7 of ECLS to control seizure activity. Due to severe intracerebral bleeding on day 9, ECLS was withdrawn and the patient expired. Our experience demonstrates some of the challenges of medication titration during ECLS. Previous reports of phenobarbital dosing during ECLS are reviewed and considerations for the dosing of anticonvulsant medications during extracorporeal support are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590551PMC
http://dx.doi.org/10.4103/0970-9185.105811DOI Listing

Publication Analysis

Top Keywords

seizure activity
16
extracorporeal membrane
8
membrane life
8
life support
8
ecls
8
extracorporeal support
8
dosing ecls
8
loading dose
8
dose mg/kg
8
day ecls
8

Similar Publications

Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.

View Article and Find Full Text PDF

Mental health (MH) comorbidities are prevalent among people with epilepsy (PWE), but many experience challenges accessing care. To address this, suggestions have been made to integrate MH care into epilepsy care settings, yet the current approaches, benefits, and implementation determinants to MH care integration are unclear. This review aims to synthesize existing integrated MH care models for PWE to inform the development and planning of future initiatives.

View Article and Find Full Text PDF

Unlabelled: SYNGAP1 is a key Ras-GAP protein enriched at excitatory synapses, with mutations causing intellectual disability and epilepsy in humans. Recent studies have revealed that in addition to its role as a negative regulator of G-protein signaling through its GAP enzymatic activity, SYNGAP1 plays an important structural role through its interaction with post-synaptic density proteins. Here, we reveal that intrinsic excitability deficits and seizure phenotypes in heterozygous Syngap1 knockout (KO) mice are differentially dependent on Syngap1 GAP activity.

View Article and Find Full Text PDF

Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).

View Article and Find Full Text PDF

Background And Purpose: Polycystins (PKD2, PKD2L1) are voltage-gated and Ca -modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!