Mucins are the main components of the gastrointestinal mucus layer. Mucin glycosylation is critical to most intermolecular and intercellular interactions. However, due to the highly complex and heterogeneous mucin glycan structures, the encoded biological information remains largely encrypted. Here we have developed a methodology based on force spectroscopy to identify biologically accessible glycoepitopes in purified porcine gastric mucin (pPGM) and purified porcine jejunal mucin (pPJM). The binding specificity of lectins Ricinus communis agglutinin I (RCA), peanut (Arachis hypogaea) agglutinin (PNA), Maackia amurensis lectin II (MALII), and Ulex europaeus agglutinin I (UEA) was utilized in force spectroscopy measurements to quantify the affinity and spatial distribution of their cognate sugars at the molecular scale. Binding energy of 4, 1.6, and 26 aJ was determined on pPGM for RCA, PNA, and UEA. Binding was abolished by competition with free ligands, demonstrating the validity of the affinity data. The distributions of the nearest binding site separations estimated the number of binding sites in a 200-nm mucin segment to be 4 for RCA, PNA, and UEA, and 1.8 for MALII. Binding site separations were affected by partial defucosylation of pPGM. Furthermore, we showed that this new approach can resolve differences between gastric and jejunum mucins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659345PMC
http://dx.doi.org/10.1096/fj.12-221416DOI Listing

Publication Analysis

Top Keywords

force spectroscopy
12
spatial distribution
8
purified porcine
8
rca pna
8
pna uea
8
binding site
8
site separations
8
mucin
6
binding
6
mining "glycocode"--exploring
4

Similar Publications

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Boron-dependent autoinducer-2-mediated quorum sensing stimulates the Cr(VI) reduction of Leucobacter chromiireducens CD49.

J Environ Manage

January 2025

Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China. Electronic address:

Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.

View Article and Find Full Text PDF

α-Terpineol and 1,8-cineole are two important compounds in essential oils. This study developed an efficient method to recover α-terpineol from model oil (MO) based on association extraction by in situ formations of deep eutectic solvent (DES) between α-terpineol and some quaternary ammonium salts (QASs) by hydrogen-bond (HB) interaction. Such interaction could be broken almost completely by the introduction of water, due to the stronger HB interaction between water and QASs, which could release α-terpineol by liquid-liquid separation and save the organic solvents consumption.

View Article and Find Full Text PDF

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.

View Article and Find Full Text PDF

Amphotericin B Encapsulation in Polymeric Nanoparticles: Toxicity Insights via Cells and Zebrafish Embryo Testing.

Pharmaceutics

January 2025

Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos (PPG-PTFM), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil.

Amphotericin B (AmB) is a commonly utilized antifungal agent, which is also recommended for the treatment of certain neglected tropical diseases, including leishmaniasis. However, its clinical application is constrained because of its poor oral bioavailability and adverse effects, prompting the investigation of alternative drug delivery systems. Polymeric nanoparticles (PNPs) have gained attention as a potential drug delivery vehicle, providing advantages such as sustained release and enhanced bioavailability, and could have potential as AmB carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!