Using Extracellular Single-unit Electrophysiological Data as a Substrate for Investigative Laboratory Exercises.

J Undergrad Neurosci Educ

Department of Psychology and Program in Cognitive and Neuroscience Studies, Macalester College, Saint Paul, MN 55105;

Published: March 2013

Desirable objectives for laboratory-based science courses include fostering skills in problem solving and reasoning, enhancing data fluency, and encouraging consideration of science as an integrative enterprise. An effective means of reaching these objectives is to structure learning experiences around interesting problems in our own research. In this article, we explore the idea of using extracellular single-unit electrophysiological data as a substrate for student investigatory exercises as a means of achieving many of these objectives. In the article, we provide an overview of extracellular single-unit recording techniques and discuss the organization of single-unit data files. In addition, we describe a multi-week module recently administered in an intermediate-level laboratory course and provide suggestions both for more limited exercises and for more advanced projects. Finally, we describe a companion website that provides to instructors considering implementing similar exercises access to a variety of resources, including software, sample data, and additional information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592630PMC

Publication Analysis

Top Keywords

extracellular single-unit
12
single-unit electrophysiological
8
electrophysiological data
8
data substrate
8
data
5
substrate investigative
4
investigative laboratory
4
exercises
4
laboratory exercises
4
exercises desirable
4

Similar Publications

The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay.

View Article and Find Full Text PDF

Local Administration of (-)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons.

Cells

January 2025

Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan.

While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli.

View Article and Find Full Text PDF

Objective: The ventral tegmental area (VTA), a pivotal hub in the brain's reward circuitry, receives inputs from the lateral hypothalamic area (LHA). However, it remains unclear whether melanin-concentrating hormone (MCH) and orexin-A (OX-A) neurons in the LHA exert individual or cooperative influence on palatable food consumption in the VTA. This study aims to investigate the modulatory role of MCH and OX-A in hedonic feeding within the VTA of high-fat diet (HFD) mice.

View Article and Find Full Text PDF

Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA.

View Article and Find Full Text PDF

Piezo1, but not ATP, is required for mechanotransduction by bladder mucosal afferents in cystitis.

Auton Neurosci

December 2024

Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia. Electronic address:

Piezo ion channels play a role in bladder sensation, but the sensory afferent subtypes that utilise Piezo channels have not been fully explored. We made single-unit extracellular recordings from mucosal-projecting bladder afferents in guinea pigs with protamine/zymosan-induced cystitis. The Piezo1 agonist, Yoda1, significantly potentiated mechanosensitivity, while its antagonist, Dooku1, abolished this potentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!