Many studies have established the central involvement of the Golgi apparatus in the transport and processing of plasma membrane, lysosomal, and secreted proteins. The Golgi apparatus of neurons is also involved in the axoplasmic flow of fast-moving macromolecules and in the orthograde, retrograde, and transsynaptic transport of exogenous ligands. Markers of the Golgi apparatus, based on traditional methods of enzyme cytochemistry, are not applicable to human tissues obtained at autopsy. For that reason, the Golgi apparatus of brain cells has not been examined adequately in diseases of the human nervous system. Here we report that an antiserum raised against MG-160, a 160-kDa sialoglycoprotein of medial cisternae of the Golgi apparatus of several rat cells, is a specific and easily reproducible immunocytochemical marker of the Golgi apparatus of human neurons and other cells obtained at autopsy. Application of this probe in amyotrophic lateral sclerosis has shown a fragmentation of the Golgi apparatus in motor neurons similar to that induced by depolymerization of microtubules. We suggest that the fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis has functional implications because significant reductions of secretion of insulin and immunoglobulins have been observed in islet cells and plasma cells, respectively, treated with microtubule-disrupting agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC54116PMC
http://dx.doi.org/10.1073/pnas.87.11.4393DOI Listing

Publication Analysis

Top Keywords

golgi apparatus
36
fragmentation golgi
12
apparatus motor
12
motor neurons
12
amyotrophic lateral
12
lateral sclerosis
12
apparatus
9
neurons amyotrophic
8
golgi
8
neurons
5

Similar Publications

The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.

View Article and Find Full Text PDF

The brain presents various structural and functional sex differences, for which multiple factors are attributed: genetic, epigenetic, metabolic, and hormonal. While biological sex is determined by both sex chromosomes and sex hormones, little is known about how these two factors interact to establish this dimorphism. Sex differences in the brain also affect its resident immune cells, microglia, which actively survey the brain parenchyma and interact with sex hormones throughout life.

View Article and Find Full Text PDF

Protein glycosylation plays a versatile role in regulating homeostasis, such as cell migration, protein sorting, and the immune response. Drugs aimed at targeting glycosylation have strong implications for immunity enhancement, diagnosis, and cancer regression. Programmed death-ligand 1 (PD-L1), expressed in cancer or antigen-presenting cells, binds to programmed cell death protein 1 (PD-1) and suppresses T cells.

View Article and Find Full Text PDF

Background: This study aimed to elucidate the transport mechanism of lycopene-loaded nanomicelles to improve intestinal absorption of lycopene. The interactive mechanism between lycopene and nanomicelles was investigated through isothermal titration calorimetry (ITC). The cytotoxicity, cellular uptake, endocytosis, and intracellular transport pathways of lycopene-loaded nanomicelles were investigated using the Caco-2 cell model.

View Article and Find Full Text PDF

Proximity Labeling-Based Identification of MGAT3 Substrates and Revelation of the Tumor-Suppressive Role of Bisecting GlcNAc in Breast Cancer via GLA Degradation.

Cells

January 2025

Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China.

Glycosylation plays a critical role in various biological processes, yet identifying specific glycosyltransferase substrates remains a challenge due to the complexity of glycosylation. Here, we employ proximity labeling with biotin ligases BASU and TurboID to map the proximitome of MGAT3, a glycosyltransferase responsible for the biosynthesis of the bisecting GlcNAc structure, in HEK293T cells. This approach enriched 116 and 189 proteins, respectively, identifying 17 common substrates shared with bisecting GlcNAc-bearing proteome obtained via intact glycopeptide enrichment methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!