KCa3.1 has been suggested to be involved in regulating cell activation, proliferation, and migration in multiple cell types, including airway inflammatory and structural cells. However, the contributions of KCa3.1 to airway inflammation and remodeling and subsequent airway hyperresponsiveness (AHR) in allergic asthma remain to be explored. The main purpose of this study was to elucidate the roles of KCa3.1 and the potential therapeutic value of KCa3.1 blockers in chronic allergic asthma. Using real-time PCR, Western blotting, or immunohistochemical analyses, we explored the precise role of KCa3.1 in the bronchi of allergic mice and asthmatic human bronchial smooth muscle cells (BSMCs). We found that KCa3.1 mRNA and protein expression were elevated in the bronchi of allergic mice, and double labeling revealed that up-regulation occurred primarily in airway smooth muscle cells. Triarylmethane (TRAM)-34, a KCa3.1 blocker, dose-dependently inhibited the generation and maintenance of the ovalbumin-induced airway inflammation associated with increased Th2-type cytokines and decreased Th1-type cytokine, as well as subepithelial extracellular matrix deposition, goblet-cell hyperplasia, and AHR in a murine model of asthma. Moreover, the pharmacological blockade and gene silencing of KCa3.1, which was evidently elevated after mitogen stimulation, suppressed asthmatic human BSMC proliferation and migration, and arrested the cell cycle at the G0/G1 phase. In addition, the KCa3.1 activator 1-ethylbenzimidazolinone-induced membrane hyperpolarization and intracellular calcium increase in asthmatic human BSMCs were attenuated by TRAM-34. We demonstrate for the first time an important role for KCa3.1 in the pathogenesis of airway inflammation and remodeling in allergic asthma, and we suggest that KCa3.1 blockers may represent a promising therapeutic strategy for asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2012-0236OCDOI Listing

Publication Analysis

Top Keywords

airway inflammation
16
allergic asthma
16
kca31
12
inflammation remodeling
12
asthmatic human
12
remodeling allergic
8
asthma kca31
8
proliferation migration
8
kca31 blockers
8
role kca31
8

Similar Publications

Introduction: In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization.

Areas Covered: 1.

View Article and Find Full Text PDF

Neuroimmune signalling pathways in chronic rhinosinusitis with nasal polyps.

Curr Opin Allergy Clin Immunol

February 2025

Specialist Allergy and Clinical Immunology, Rhinology Section, Royal National ENT and Eastman Dental Hospitals, University College London Hospitals NHS Foundation Trust, London, UK.

Purpose Of Review: To evaluate the role of neuroimmune signalling pathways in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP).

Recent Findings: The sinonasal mucosa is densely infiltrated by immune cells and neuronal structures that share an intimate spatial relationship within tissue compartments. Together, such neuroimmune units play a critical role in airway defence and homeostatic function.

View Article and Find Full Text PDF

Similarly to acute intestinal helminth infection, several conditions of chronic eosinophilic type 2 inflammation of mucosal surfaces, including asthma and eosinophilic esophagitis, feature robust expansions of intraepithelial mast cells (MCs). Also the hyperplastic mucosa of nasal polyposis in the context of chronic rhinosinusitis, with or without COX1 inhibitor intolerance, contains impressive numbers of intraepithelial MCs. In this issue of the JCI, Derakhshan et al.

View Article and Find Full Text PDF

Immune dysregulation as a driver of bronchiolitis obliterans.

Front Immunol

January 2025

Department of Respiration, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China.

Bronchiolitis obliterans (BO) is a disease characterized by airway obstruction and fibrosis that can occur in all age groups. Bronchiolitis obliterans syndrome (BOS) is a clinical manifestation of BO in patients who have undergone lung transplantation or hematopoietic stem cell transplantation. Persistent inflammation and fibrosis of small airways make the disease irreversible, eventually leading to lung failure.

View Article and Find Full Text PDF

Chronic Obstructive Pulmonary Disease: Lifestyle Impact.

Int J Prev Med

November 2024

Department of Nutrition and Dietetics, School of Allied Health Sciences, Faridabad, Haryana, India.

Article Synopsis
  • Respiratory infections are a major global health issue, responsible for 7.5 million deaths annually, highlighting their impact on both health and economics.
  • Chronic obstructive pulmonary disease (COPD) arises from lifestyle choices and environmental factors, necessitating interventions like smoking cessation, healthy diets, and physical activity to improve lung health.
  • European health initiatives focus on early detection and prevention through awareness campaigns, vaccination programs, and nutritional support to reduce the incidence and severity of respiratory diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!