We have determined the DNA sequences in the J2-C2 intron of the T cell receptor (TCR) beta gene and analyzed nuclear proteins binding to this region. Previously, we identified two tissue-specific DNase I hypersensitive regions, potential regulatory regions, in the J-C intron. The DNA sequence of the J2-C2 intron revealed that both DNase I hypersensitive regions have similar DNA sequences, suggesting that these regions are evolutionarily conserved. We have also identified tissue-specific nuclear-protein binding regions downstream of the DNase hypersensitive regions. Although transcriptional enhancer activity was not observed in the hypersensitive regions or the adjacent protein binding regions in the J-C intron, our findings suggest that the TCR-beta J-C intron may contain some other type of regulatory element.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC330834PMC
http://dx.doi.org/10.1093/nar/18.10.3027DOI Listing

Publication Analysis

Top Keywords

j-c intron
16
hypersensitive regions
16
binding regions
12
dnase hypersensitive
12
regions
9
nuclear proteins
8
dna sequence
8
protein binding
8
cell receptor
8
dna sequences
8

Similar Publications

Background: Stargardt disease type 1 (STGD1) is a progressive retinal disorder caused by bi-allelic variants in the ABCA4 gene. A recurrent variant at the exon-intron junction of exon 6, c.768G>T, causes a 35-nt elongation of exon 6 that leads to premature termination of protein synthesis.

View Article and Find Full Text PDF

Deep-intronic (DI) variants represent approximately 10%-12% of disease-causing genetic defects in -associated Stargardt disease (STGD1). Although many of these DI variants are amenable to antisense oligonucleotide-based splicing-modulation therapy, no treatment is currently available. These molecules are mostly variant specific, limiting their applicability to a broader patient population.

View Article and Find Full Text PDF

Antisense oligonucleotides enhance SLC20A2 expression and suppress brain calcification in a humanized mouse model.

Neuron

October 2024

Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China. Electronic address:

Article Synopsis
  • Primary familial brain calcification (PFBC) is a genetic neurological disorder with no current effective treatment, linked to mutations in the SLC20A2 gene.
  • Researchers identified five new genetic variants in the SLC20A2 gene that disrupt normal splicing of its pre-mRNA, leading to dysfunctional protein production.
  • The use of splice-switching antisense oligonucleotides (ASOs) not only helped restore functional SLC20A2 expression in affected cells but also showed promise in reducing brain calcification and controlling phosphorus levels in animal models, highlighting a potential therapeutic approach for PFBC.
View Article and Find Full Text PDF

Indolent CD4+ CAR T-Cell Lymphoma after Cilta-cel CAR T-Cell Therapy.

N Engl J Med

June 2024

From the Departments of Pathology (M.O., J.J.C.) and Gastroenterology (T.M.L.), MedStar Georgetown University Hospital, and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center (E.D., A.U.) - both in Washington, DC; the Genomic Testing Cooperative, Irvine, CA (M.A.); the National Institutes of Health, Bethesda, MD (S.P.); and Brigham and Women's Hospital (S.S.), the Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute (K.C.A.), and Harvard Medical School (P.A.) - all in Boston.

Indolent CD4+ cytotoxic chimeric antigen receptor (CAR) T-cell lymphoma involving the small intestine was diagnosed in a patient who had previously received ciltacabtagene autoleucel (cilta-cel) CAR T-cell therapy for treatment of myeloma. Targeted messenger RNA sequencing revealed the presence of CAR gene product in tumor cells. Whole-genome sequencing of samples of tumor and peripheral blood identified a single lentiviral insertion site within the second intron of the gene.

View Article and Find Full Text PDF

Genome Sequencing for Diagnosing Rare Diseases.

N Engl J Med

June 2024

From the Division of Newborn Medicine (M.H.W., P.B.A.), the Manton Center for Orphan Disease Research (M.H.W., W.W., S.L.S., J.A.M., J.L., C.A.G., H.T.G., A.H.B., P.B.A., A.O.-L.), Division of Genetics and Genomics (M.H.W., G.L., S.L.S., L.P., E.G., H.T.G., V.S.G., A.H.B., P.B.A., A.O.-L.), Department of Pediatrics (S. Shril, R.S., F.H., W.K.C.), and the Division of Hematology and Oncology (M.W., J.M.V., V.G.S., L.D.C.), Boston Children's Hospital, Harvard Medical School, the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School (M.W., J.M.V., V.G.S., L.D.C.), the Center for Genomic Medicine (A.S.-J., J.G., J.M.F., H.B., M.T., C.A.-T., H.L.R., A.O.-L.) and the Pediatric Surgical Research Laboratories (H.B.), Massachusetts General Hospital, the Department of Neurology, Harvard Medical School (A.S.-J., V.S.G., J.M.F., H.B., M.T.), the Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School (E.A.P., E.M.P., K.M.B.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), Boston, the Broad Center for Mendelian Genomics (M.H.W., G.L., B.W., G.E.V., S.L.S., H.S., M.S.-B., E.G.S., A.S.-J., K.A.R., L.P., I.O.-O., M.O., E.O., B.E.M., D.M., A.L., E.G., J.G., V.S.G., J.M.F., E. Evangelista, E. England, S. DiTroia, K.R.C., H.B., A.H.B., S.M.B., M.T., C.A.-T., H.L.R., A.O.-L.), Program in Medical and Population Genetics (M.W., J.M.V., V.G.S., L.D.C., A.H.B., P.B.A.), and the Stanley Center for Psychiatric Research (M.T.), Broad Institute of MIT and Harvard, and the Harvard Stem Cell Institute (V.G.S., L.D.C.), Cambridge - all in Massachusetts; the Institute of Human Genetics, University of Leipzig Medical Center (E.B., V. Strehlow, M.R., D.P., K.P., H.O., J.H., T.B., R.A.J.), and the Division of Neuropediatrics, Hospital for Children and Adolescents, University Hospital Leipzig (A.M., J.G.-A.), Leipzig, the Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf (D.W.), Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Epileptology, Heidelberg (S. Syrbe), and the Department of Epileptology, Krankenhaus Mara, Bethel Epilepsy Center, Medical School OWL, Bielefeld University, Bielefeld (T.P.) - all in Germany; the Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Center, Cairo (M.S.Z.); the Victorian Clinical Genetics Service (S.M.W., T.Y.T., L.G., J.C.), the Centre for Population Genomics (D.M.), and the Brain and Mitochondrial Research Group (J.C.), Murdoch Children's Research Institute, Parkville, VIC, the Department of Paediatrics, University of Melbourne, Melbourne (S.M.W., T.Y.T., L.G., J.C.), the Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead (L.B.W., R.G.M., S.T.C., S.J.B.), the Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney (L.B.W., R.G.M., S.T.C., S.J.B.), and Functional Neuromics, Children's Medical Research Institute (R.G.M., S.T.C., S.J.B.), Westmead, NSW, the Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, WA (G.R., N.L.), the Centre for Population Genomics, Garvan Institute of Medical Research, Sydney (D.M.), and the Department of Neurology, Central Adelaide Local Health Network/Royal Adelaide Hospital, Adelaide Medical School, University of Adelaide, and the Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA (R.G.) - all in Australia; the John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (A.T., V. Straub); the Fred A. Litwin Family Centre in Genetic Medicine, University Health Network (J.S., C.F.M.), the Department of Molecular Genetics (J.S.), the Faculty of Medicine (C.F.M.), and the Department of Laboratory Medicine and Pathobiology (J.P.L.-E.), University of Toronto, and Pathology and Laboratory Medicine and the Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health (J.P.L.-E.) - all in Toronto; the Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, and the Department of Genetics and Personalized Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia (K.R., S.P., K.Õ., K.T.O.); Molecular Diagnostics, New York Genome Center (V.O.), and the Department of Pathology and Cell Biology, Columbia University Irving Medical Center (M.G.) - both in New York; the Department of Neurosciences, University of California, San Diego, La Jolla, and Rady Children's Institute for Genomic Medicine, San Diego - both in California (J.G.G.); and the Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (S. Donkervoort, C.G.B.).

Article Synopsis
  • Researchers sequenced the genomes of 822 families with suspected rare monogenic diseases that were previously undiagnosed through standard genetic tests, including exome sequencing.
  • They found that genome sequencing provided a molecular diagnosis for 29.3% of the initial families, with 8.2% requiring genome sequencing to identify variants that exome sequencing missed.
  • The study showed that both research and clinical approaches could benefit from genome sequencing, demonstrating its importance in uncovering previously undetected genetic variations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!