Functions of the centromere and kinetochore in chromosome segregation.

Curr Opin Cell Biol

Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305, United States.

Published: June 2013

Centromeres play essential roles in equal chromosome segregation by directing the assembly of the microtubule binding kinetochore and serving as the cohesion site between sister chromatids. Here, we review the significant recent progress in our understanding of centromere protein assembly and how centromere proteins form the foundation of the kinetochore.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687001PMC
http://dx.doi.org/10.1016/j.ceb.2013.02.001DOI Listing

Publication Analysis

Top Keywords

chromosome segregation
8
functions centromere
4
centromere kinetochore
4
kinetochore chromosome
4
segregation centromeres
4
centromeres play
4
play essential
4
essential roles
4
roles equal
4
equal chromosome
4

Similar Publications

TOP2A inhibition and its cellular effects related to cell cycle checkpoint adaptation pathway.

Sci Rep

January 2025

Departamento Biología Experimental, Universidad de Jaén, Paraje Las Lagunillas S/N E23071, Jaén, Spain.

In this study, we investigate the G2 checkpoint activated by chromosome entanglements, the so-called Decatenation Checkpoint (DC), which can be activated by TOP2A catalytic inhibition. Specifically, we focus on the spontaneous ability of cells to bypass or override this checkpoint, referred to as checkpoint adaptation. Some factors involved in adapting to this checkpoint are p53 and MCPH1.

View Article and Find Full Text PDF

Optimal strategies for correcting merotelic chromosome attachments in anaphase.

Proc Natl Acad Sci U S A

February 2025

Courant Institute for Mathematical Sciences and Department of Biology, New York University, New York, NY 10012.

Accurate chromosome segregation in mitosis depends on proper connections of sister chromatids, through microtubules, to the opposite poles of the early mitotic spindle. Transiently, many inaccurate connections are formed and rapidly corrected throughout the mitotic stages, but a small number of merotelic connections, in which a chromatid is connected to both spindle poles, remain lagging at the spindle's equator in anaphase. Most of the lagging chromatids are eventually moved to one or the other pole, likely by a combination of microtubules' turnover and the brute force of pulling by the microtubules' majority from the one pole against the microtubules' minority from the other pole.

View Article and Find Full Text PDF

Sister chromatid cohesion through the lens of biochemical experiments.

Curr Opin Cell Biol

January 2025

Department of Chromosome Science, National Institute of Genetics, Mishima, 411-8540, Japan; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan. Electronic address:

Faithful chromosome segregation in eukaryotes relies on physical cohesion between newly duplicated sister chromatids. Cohesin is a ring-shaped ATPase assembly that mediates sister chromatid cohesion through its ability to topologically entrap DNA. Cohesin, assisted by several regulatory proteins, binds to DNA prior to DNA replication and then holds two sister DNAs together when it encounters the replication machinery.

View Article and Find Full Text PDF

Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Increased localization of several SAC proteins was found upon depolymerization of microtubules by colchicine.

View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of causes severe growth phenotypes in many organisms. Surprisingly, can be deleted in , a member of the phylum, without any apparent growth phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!