Acid-sensing ion channels (ASICs) are voltage-insensitive cation channels responding to extracellular acidification. ASIC proteins have two transmembrane domains and a large extracellular domain. The molecular topology of ASICs is similar to that of the mechanosensory abnormality 4- or 10-proteins expressed in touch receptor neurons and involved in neurosensory mechanotransduction in nematodes. The ASIC proteins are involved in neurosensory mechanotransduction in mammals. The ASIC isoforms are expressed in Merkel cell-neurite complexes, periodontal Ruffini endings and specialized nerve terminals of skin and muscle spindles, so they might participate in mechanosensation. In knockout mouse models, lacking an ASIC isoform produces defects in neurosensory mechanotransduction of tissue such as skin, stomach, colon, aortic arch, venoatrial junction and cochlea. The ASICs are thus implicated in touch, pain, digestive function, baroreception, blood volume control and hearing. However, the role of ASICs in mechanotransduction is still controversial, because we lack evidence that the channels are mechanically sensitive when expressed in heterologous cells. Thus, ASIC channels alone are not sufficient to reconstruct the path of transducing molecules of mechanically activated channels. The mechanotransducers associated with ASICs need further elucidation. In this review, we discuss the expression of ASICs in sensory afferents of mechanoreceptors, findings of knockout studies, technical issues concerning studies of neurosensory mechanotransduction and possible missing links. Also we propose a molecular model and a new approach to disclose the molecular mechanism underlying the neurosensory mechanotransduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823015 | PMC |
http://dx.doi.org/10.1111/jcmm.12025 | DOI Listing |
Glycobiology
April 2024
Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling.
View Article and Find Full Text PDFExp Physiol
January 2024
The Ph.D. Program for Translational Medicine, Taipei Medical University and Academia Sinica, New Taipei City, Taiwan.
Adv Exp Med Biol
July 2019
Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
Acid-sensing ion channels (ASICs) are a group of proton-gated ion channels belonging to the degenerin/epithelial sodium channel (DED/ENaC) family. There are at least six ASIC subtypes - ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4 - all expressed in somatosensory neurons. ASIC3 is the most abundant in dorsal root ganglia (DRG) and the most sensitive to extracellular acidification.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
October 2018
Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Research Centre Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
In the 1940s, Georg von Békésy discovered that in the inner ear of cadavers of various vertebrates, structures responded to sound with a displacement wave that travels in a basal-to-apical direction. This historical review examines this concept and sketches its rôle and significance in the development of the research field of cochlear mechanics. It also illustrates that this concept and that of tonotopicity necessarily correlate, in that travelling waves are consequences of the existence of an ordered, longitudinal array of receptor cells tuned to systematically changing frequencies along the auditory organ.
View Article and Find Full Text PDFJ Exp Biol
August 2017
Neurogenetics group, Cluster of Excellence "Hearing4All", School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg 26111, Germany
Mechanoelectrical transduction in the vertebrate inner ear is a highly conserved mechanism that is dependent on K influx into hair cells. Here, we investigated the molecular underpinnings of subsequent K recycling in the chicken basilar papilla and compared them with those in the mammalian auditory sensory epithelium. As in mammals, the avian auditory hair cell uses KCNQ4, KCNMA1 and KCNMB1 in its K efflux system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!