The hypothalamic neurochemicals neuropeptide Y (NPY), orexin-A (ORX), and oxytocin (OXY) exert glucoregulatory effects upon intracerebral administration, findings that support their potential function within neural pathways that maintain glucostasis. Current understanding of how these neurotransmitter systems respond to the diabetes mellitus complication, insulin-induced hypoglycemia, is limited to knowledge of neuropeptide gene transcriptional reactivity. We investigated the hypothesis that hypoglycemia elicits hypothalamic site-specific alterations in levels of these neurochemicals, and that adjustments in local neurotransmitter availability may be regulated by catecholaminergic (CA) input from the caudal dorsomedial hindbrain. The arcuate (ARH) and paraventricular (PVH) hypothalamic nuclei and lateral hypothalamic area (LHA) were each microdissected from adult male rats pretreated by caudal fourth ventricular administration of the selective CA neurotoxin, 6-hydroxydopamine (6-OHDA), or vehicle prior to insulin (INS)-induced hypoglycemia. Hypoglycemia stimulated ARH NPY gene expression and NPY accumulation in the ARH and LHA, but not PVH. 6-OHDA pretreatment did not modify the positive NPY mRNA response to INS, but blunted hypoglycemic augmentation of ARH and LHA NPY content while increasing PVH NPY levels in response to hypoglycemia. INS-treated rats exhibited diminished LHA ORX gene expression and increased [ARH; LHA] or decreased [PVH] tissue ORX protein levels. 6-OHDA+INS animals showed a comparable decline in ORX transcripts, but attenuated augmentation of ARH and LHA ORX content and elevated PVH ORX levels. OT mRNA and protein were respectively decreased or unchanged during hypoglycemia, responses that were uninfluenced by hindbrain CA nerve cell destruction. These results illustrate divergent adjustments in glucoregulatory neurotransmitter gene expression and site-specific protein accumulation in the hypothalamus during hypoglycemia. Evidence that 6-OHDA pretreatment does not modify NPY or ORX transcriptional reactivity to hypoglycemia, but alters hypoglycemic patterns of NPY and ORX accretion implicates dorsomedial hindbrain CA neurons in regulation of translation/post-translational processing and site-specific availability of these neurotransmitters in the hypothalamus during hypoglycemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.npep.2013.01.004DOI Listing

Publication Analysis

Top Keywords

dorsomedial hindbrain
12
gene expression
12
arh lha
12
hypoglycemia
10
glucoregulatory neurotransmitter
8
neurotransmitter gene
8
caudal dorsomedial
8
catecholaminergic input
8
npy
8
orx
8

Similar Publications

Article Synopsis
  • Biological aging involves a gradual loss of homeostasis in molecular and cellular functions, particularly in the brain, which contains diverse cell types that differ in their aging resilience.
  • This study offers an extensive single-cell RNA sequencing dataset of approximately 1.2 million transcriptomes from brain cells in young and aged mice, identifying 847 cell clusters and 14 age-biased clusters predominantly involving glial types.
  • Key findings reveal specific gene expression changes with aging, including decreased neuronal function genes and increased immune-related genes, particularly in cells around the third ventricle of the hypothalamus, suggesting its critical role in the aging process of the mouse brain.
View Article and Find Full Text PDF

Background: Migraine and insomnia are prevalent conditions that often co-occur, each exacerbating the other and substantially impacting the quality of life. The locus coeruleus (LC), a brainstem region responsible for norepinephrine synthesis, participates in pain modulation, sleep/wake cycles, and emotional regulation, rendering it a potential nexus in the comorbidity of migraine and insomnia. Disruptions in the LC-noradrenergic system have been hypothesized to contribute to the comorbidities of migraine and insomnia, although neuroimaging evidence in humans remains scarce.

View Article and Find Full Text PDF

Serotonin (5-hydroxytryptamine, 5-HT) is a very important neurotransmitter emerging from the raphe nuclei to several brain regions. Serotonergic neuronal connectivity has multiple functions in the brain. In this study, several techniques were used to trace serotonergic neurons in the dorsal raphe (DR) and median raphe (MnR) that project toward the arcuate nucleus of the hypothalamus (Arc), dorsomedial hypothalamic nucleus (DM), lateral hypothalamic area (LH), paraventricular hypothalamic nucleus (PVH), ventromedial hypothalamic nucleus (VMH), fasciola cinereum (FC), and medial habenular nucleus (MHb).

View Article and Find Full Text PDF

A 70-year-old right-handed housewife suffered an acute loss of taste, an unpleasant change in the taste of foods and liquids, and a strong aversion to all kinds of food due to a small lacune in the right dorsomedial pontine tegmentum. Eating became so unpleasant that she lost 7 kg in three weeks. Olfaction and the sensibility of the tongue were spared.

View Article and Find Full Text PDF

Background: The dentate nuclei of the cerebellum are key sites of neuropathology in Friedreich ataxia (FRDA). Reduced dentate nucleus volume and increased mean magnetic susceptibility, a proxy of iron concentration, have been reported by magnetic resonance imaging studies in people with FRDA. Here, we investigate whether these changes are regionally heterogeneous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!