Objectives: Semagacestat, is a γ-secretase inhibitor, which belongs to a class of drugs that are being developed as therapeutic agents for Alzheimer's disease (AD). This study aims to evaluate another potential effect of semagacestat, namely its ability to stimulate the growth hormone secretagogue receptor (GHS-R1a), which may also contribute to its therapeutic efficacy.
Methods: The GHS-R1a-activating potential of semagacestat and its synthetic precursor was assessed in an in vitro calcium mobilization assay in cells expressing the GHS-R1a receptor and compared with that of the endogenous peptide GHS-R1a agonist, acyl-ghrelin, as well as the non-peptidyl synthetic GHS-R1a agonist, MK0677. In addition, semagacestat-mediated cellular trafficking of the GHS-R1a receptor, expressed as an enhanced green fluorescent protein tagged fusion protein, was analysed.
Key Findings: Semagacestat and its precursor were shown to activate the GHS-R1a receptor, as demonstrated by an increased GHS-R1a-mediated intracellular calcium influx. Moreover, a synergistic GHS-R1a receptor activation was shown following a combined exposure to ghrelin and semagacestat. In addition, GHS-R1a receptor internalization was observed upon exposure to semagacestat and its precursor.
Conclusion: These data suggest a novel molecular mechanism of action for semagacestat via modest GHS-R1a receptor activation. Studies focusing on the relative functional consequence of such effects in vivo are now warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jphp.12010 | DOI Listing |
Molecules
January 2025
College of Life Science, Liaoning Normal University, Dalian 116081, China.
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin-GHSR1a signaling pathway.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
Drugs targeting the ghrelin receptor hold therapeutic potential in anorexia, obesity and diabetes. However, developing effective drugs is challenging. To tackle this common issue across a broad drug target, this study aims to understand how anamorelin, the only approved drug targeting the ghrelin receptor, operates compared to other synthetic drugs.
View Article and Find Full Text PDFEndocrinology
January 2025
Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE) (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Buenos Aires 1900, Argentina.
Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.
Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.
Nutrients
December 2024
Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
: Endothelial peroxisome proliferator-activated receptor gamma (PPARγ) regulates adipose tissue by facilitating lipid uptake into white adipocytes, but the role of endothelial lipid transport in systemic energy balance remains unclear. Ghrelin conveys nutritional information through the central nervous system and increases adiposity, while deficiency in its receptor, growth hormone secretagogue-receptor (GHSR), suppresses adiposity on a high-fat diet. This study aims to examine the effect of ghrelin/GHSR signaling in the endothelium on lipid metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!