Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal monitoring. This paper reviews the theoretical basis whereby proximal spectral sensing of soil and vegetation could be used to monitor phytoremediation of metal-contaminated soils, and the eventual upscaling to imaging sensing. Both laboratory and field spectroscopy have been applied to sense heavy metals in soils indirectly via their intercorrelations with soil constituents, and also through metal-induced vegetation stress. In soil, most predictions are based on intercorrelations of metals with spectrally-active soil constituents viz., Fe-oxides, organic carbon, and clays. Spectral variations in metal-stressed plants is particularly associated with changes in chlorophyll, other pigments, and cell structure, all of which can be investigated by vegetation indices and red edge position shifts. Key shortcomings in obtaining satisfactory calibration for monitoring the metals in soils or metal-related plant stress include: reduced prediction accuracy compared to chemical methods, complexity of spectra, no unique spectral features associated with metal-related plant stresses, and transfer of calibrations from laboratory to field to regional scale. Nonetheless, spectral sensing promises to be a time saving, non-destructive and cost-effective option for long-term monitoring especially over large phytoremediation areas, and it is well-suited to phytoremediation networks where monitoring is an integral part.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2012.702805 | DOI Listing |
Light Sci Appl
January 2025
Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.
Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.
View Article and Find Full Text PDFPlant Genome
March 2025
USDA-ARS Southeast Area, Plant Science Research, Raleigh, North Carolina, USA.
Integrating genomic, hyperspectral imaging (HSI), and environmental data enhances wheat yield predictions, with HSI providing detailed spectral insights for predicting complex grain yield (GY) traits. Incorporating HSI data with single nucleotide polymorphic markers (SNPs) resulted in a substantial improvement in predictive ability compared to the conventional genomic prediction models. Over the course of several years, the prediction ability varied due to diverse weather conditions.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing 646000, Zhejiang, China. Electronic address:
To explore the mechanism of Virgibacillus proteases on hydrolysis of shrimp myofibrillar protein (SMP) and formation of volatile compounds, the fermented broth of Virgibacillus halodenitrificans was purified and the protease was identified as peptidase S8. The enzyme had optimum activity at pH 7.0-8.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Post-Graduate and Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore, Tamil Nadu, 641 018, India.
An efficient probe (E)-2-(benzo[d]thiazol-2-yl)-3-(9-ethyl-9 H-carbazol-3-yl)acrylonitrile (CZ-BTZ) for selective fluorescence "turn-on" response with cyanide (CN) ion sensor was developed by simple Knoevenagel condensation of 9-ethyl-9 H carbazole-3-carbaldehyde with 2-(benzo[d]thiazol-2-yl) acetonitrile. The sensing ability of probe CZ-BTZ was tested with different inorganic anions through spectrophotometric and spectrofluorimetric methods. The UV-vis and fluorescence spectral studies show the formation of a new adduct between CZ-BTZ and CN by appearing with a new absorbance band at 350 nm and "turn-on" fluorescence at 535 nm in CHCN: HO (8:2, v/v, pH 7.
View Article and Find Full Text PDFSci Rep
January 2025
Terahertz Research Section, Electronics and Telecommunications Research Institute, Deajeon, 34129, Republic of Korea.
The complex dynamics of terahertz (THz) wave scattering by subwavelength-scale structures remain largely unexplored. This article examines the spectral scattering characteristics of subwavelength-sized spherical particles probed by tightly focused THz waves through numerical simulations and experimental techniques. The simulations reveal that the scattering intensity for lower Mie resonance modes (magnetic dipole and electric dipole modes) remains largely unaffected when THz waves are focused down to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!