This study investigated the reversible and irreversible foulants in a submerged microfiltration (MF) with pretreatments (coagulation/powdered activated carbon (PAC)/potassium permanganate) in a pilot scale treatment of water from Taihu Lake. The study focused on the effect of relative molecular mass (M(r)) distribution and hydrophilicity/hydrophobicity on membrane fouling using high performance size-exclusion chromatography (HPSEC) with UV and TOC detectors and three dimension fluorescence excitation-emission matrix (3DEEM). HPSEC analyses showed that pretreatments could almost completely remove the macro molecules (M(r) > 10 x 10(3)), but only eliminate part of medium (10 x 10(3)) > M(r) > 1 x 10(3)) and micro molecules (M(r) < 1 x 10(3)). A majority of medium and micro molecules were found in chemical cleaning solutions, indicating that medium and micro molecules were the main foulants that contributed to irreversible membrane fouling. In addition, it was also found that the content of strong hydrophobic acids (SHA) and neutral hydrophilic (Neut) fractions in chemical solutions were far higher than that of weakly hydrophobic acids (WHA) and charged hydrophilic (Char), which suggested that both organic fractions were responsible for irreversible fouling. 3DEEM fluorescence demonstrated that aromatic proteins and soluble microbial products were the main contributors to irreversible membrane fouling.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!