The effects of NO(x) oxidation ratio, O2 and SO2 concentrations in simulated flue gas as well as addition of S(IV) oxidation inhibitor NaS2O3 on the simultaneous removal of SO2 and NO(x) by ammonia absorption were investigated under the conditions of pH 5.9-6.1 and aqueous S(IV) concentration > or = 1.0 mol x L(-1). The research results showed that NO2 could be effectively absorbed by ammonium sulfite, but the NO absorption was negligible. Therefore, NO oxidation is the premise of NO(x) removal. Aqueous S(IV) concentration is a key factor affecting NO2 absorption removal, the higher the O2 concentration or the lower the SO2 concentration, the faster the aaqueous S(IV) concentration decreased, which resulted in a faster decrease of NO2 removal efficiency. S(IV) oxidation was inhibited to some extent by the addition of oxidation inhibitor S2O3(2-) into the absorption solution. As a result, the decrease of NO2 removal efficiency became slower.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!