The most severe manifestations of malaria (caused by Plasmodium falciparum) occur as a direct result of parasitemia following invasion of erythrocytes by post-liver blood-stage merozoites, and during subsequent cyto-adherence of infected erythrocytes to the vascular endothelium. However, the disproportionate epidemiologic clustering of severe malaria with aggressive forms of endemic diseases such as Kaposi's sarcoma (KS), a neoplasm that is etiologically linked to infection with KS-associated herpesvirus (KSHV), underscores the significance of previously unexplored co-pathogenetic interactions that have the potential to modify the overall disease burden in co-infected individuals. Based on recent studies of the mechanisms that P. falciparum and KSHV have evolved to interact with their mutual human host, several new perspectives are emerging that highlight a surprising convergence of biological themes potentially underlying their associated co-morbidities. Against this background, ongoing studies are rapidly constructing a fascinating new paradigm in which the major host receptors that control parasite invasion (Basigin/CD147) and cyto-adherence (CD36) are, surprisingly, also important targets for exploitation by KSHV. In this article, we consider the major pathobiological implications of the co-option of Basigin/CD147 and CD36 signaling pathways by both P. falciparum and KSHV, not only as essential host factors for parasite persistence but also as important mediators of the pro-angiogenic phenotype within the virus-infected endothelial microenvironment. Consequently, the triangulation of interactions between P. falciparum, KSHV, and their mutual human host articulates a syndemic relationship that points to a conceptual framework for prevalence of aggressive forms of KS in malaria-endemic areas, with implications for the possibility of dual-use therapies against these debilitating infections in resource-limited parts of the world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594938 | PMC |
http://dx.doi.org/10.3389/fmicb.2013.00035 | DOI Listing |
Front Microbiol
April 2024
Abbott Pandemic Defense Coalition, Abbott Park, IL, United States.
Introduction: Acute febrile illnesses (AFI) in developing tropical and sub-tropical nations are challenging to diagnose due to the numerous causes and non-specific symptoms. The proliferation of rapid diagnostic testing and successful control campaigns against malaria have revealed that non- pathogens still contribute significantly to AFI burden. Thus, a more complete understanding of local trends and potential causes is important for selecting the correct treatment course, which in turn will reduce morbidity and mortality.
View Article and Find Full Text PDFCancers (Basel)
December 2023
Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
The oncogenic and persistent Epstein Barr virus (EBV) is carried by more than 95% of the human adult population. While asymptomatic in most of these, EBV can cause a wide variety of malignancies of lymphoid or epithelial cell origin. Some of these are also associated with co-infections that either increase EBV-induced tumorigenesis or weaken its immune control.
View Article and Find Full Text PDFInt J Mol Sci
August 2023
International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa.
The two oncogenic human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause significant disease burden, particularly in immunosuppressed individuals. Both viruses display latent and lytic phases of their life cycle with different outcomes for their associated pathologies. The high prevalence of infectious diseases in Sub-Saharan Africa (SSA), particularly HIV/AIDS, tuberculosis, malaria, and more recently, COVID-19, as well as their associated inflammatory responses, could potentially impact either virus' infectious course.
View Article and Find Full Text PDFJ Infect Dis
February 2024
Cancer Epidemiology Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.
Background: Previously, we showed that children with asymptomatic Plasmodium falciparum (Pf) malaria infection had higher Kaposi sarcoma-associated herpesvirus (KSHV) viral load, increased risk of KSHV seropositivity, and higher KSHV antibody levels. We hypothesize that clinical malaria has an even larger association with KSHV seropositivity. In the current study, we investigated the association between clinical malaria and KSHV seropositivity and antibody levels.
View Article and Find Full Text PDFInt J Mol Sci
April 2023
Division of Infectious Diseases and Immunology, Department of Medicine, Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA.
The seroprevalence of Kaposi sarcoma-associated herpesvirus (KSHV) and the incidence of endemic Kaposi sarcoma (KS) overlap with regions of malaria endemicity in sub-Saharan Africa. Multiple studies have shown an increased risk of KSHV seroconversion in children from high malaria compared to low malaria regions; however, the impact of acute episodes of () malaria on KSHV's biphasic life cycle and lytic reactivation has not been determined. Here, we examined KSHV serological profiles and viral loads in 134 children with acute malaria and 221 healthy children from high malaria regions in Kisumu, as well as 77 healthy children from low malaria regions in Nandi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!