Genome of the model dicot flowering plant, Arabidopsis thaliana, a popular tool for understanding molecular biology of plant physiology, encodes all three classes of plant hemoglobins that differ in their sequence, ligand binding and spectral properties. As such these globins are of considerable attention. Crystal structures of few members of plant class I nonsymbiotic hemoglobin have been described earlier. Here we report the crystal structure of Arabidopsis class I hemoglobin (AHb1) to 2.2Ǻ and compare its key features with the structures of similar nonsymbiotic hemoglobin from other species. Crystal structure of AHb1 is homologous to the related members with similar globin fold and heme pocket architecture. The structure is homodimeric in the asymmetric unit with both distal and proximal histidines coordinating to the heme iron atom. Residues lining the dimeric interface are also conserved in AHb1 with the exception of additional electrostatic interaction between H112 and E113 of each subunit and that involving Y119 through two water molecules. In addition, differences in heme pocket non-covalent interactions, a novel Ser residue at F7 position, Xe binding site variability, internal cavity topology differences, CD loop conformation and stability and other such properties might explain kinetic variability in AHb1. Detailed cavity analysis of AHb1 showed the presence of a novel long tunnel connecting the distal pockets of both the monomers. Presence of such tunnel, along with conformational heterogeneity observed in the two chains, might suggest cooperative ligand binding and support its role in NO scavenging. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2013.02.024 | DOI Listing |
Sci Adv
January 2025
Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA.
Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain.
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels, and motility. Receptors are typically activated by signal binding to ligand-binding domains (LBDs). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans.
View Article and Find Full Text PDFNano Lett
January 2025
Chemical Biology 1, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
The existence of the phenomenon of enhanced enzyme diffusion (EED) has been a topic of debate in recent literature. One proposed mechanism to explain the origin of EED is oligomeric enzyme dissociation. We used mass photometry (MP), a label-free single-molecule technique, to investigate the dependence of the oligomeric states of several enzymes on their ligands.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
Implicit solvation models permit the approximate description of solute-solvent interactions, where water is the most often considered solvent due to its relevance in biological systems. The use of other solvents is less common but is relevant for applications such as in nuclear magnetic resonance (NMR) or chromatography. As an example, chloroform is commonly used in anisotropic NMR to measure residual dipolar couplings (RDCs) of chiral analytes weakly aligned by an alignment medium.
View Article and Find Full Text PDFInorg Chem
January 2025
Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!