Pulsatile growth hormone (GH) secretion putatively reflects integrated regulation by GH-releasing hormone (GHRH), somatostatin (SST), and GH-releasing peptide (GHRP). GHRH and SST secretion is itself pulsatile. However, how GHRH and SST pulses act along with GHRP to jointly determine pulsatile GH secretion is unclear. Moreover, how testosterone (T) modulates such interactions is unknown. These queries were assessed in a prospectively randomized, placebo-controlled double-blind cohort comprising 26 healthy older men randomized to testosterone (T) vs. placebo supplementation. Pulses of GHRH, SST, or saline were infused intravenously at 90-min intervals for 13 h, along with either continuous saline or ghrelin analog (GHRP-2). The train of pulses was followed by a triple stimulus (combined l-arginine, GHRH, and GHRP-2) to estimate near-maximal GH secretion over a final 3 h. Testosterone vs. placebo supplementation doubled pulsatile GH secretion during GHRH pulses combined with continuous saline (GHRH/saline) (P < 0.01). Pulsatile GH secretion correlated positively with T concentrations (270-1,170 ng/dl) in the 26 men during saline pulses/saline (P = 0.015, R(2) = 0.24), GHRH pulses/saline (P = 0.020, R(2) = 0.22), and combined GHRH pulses/GHRP-2 (P = 0.016, R(2) = 0.25) infusions. Basal nonpulsatile GH secretion correlated with T during saline pulses/GHRP-2 drive (P = 0.020, R(2) = 0.16). By regression analysis, pulsatile GH secretion varied negatively with body mass index (BMI) during saline/GHRP-2 infusion (P = 0.001, R(2) = 0.36), as well as after the triple stimulus preceded by GHRH/GHRP-2 (P = 0.013, R(2) = 0.23). Mean (10-h) GH concentrations under GHRP-2 were predicted jointly by estradiol (positively) and BMI (negatively) (P < 0.001, R(2) = 0.520). These data indicate that estradiol, T, and BMI control pulsatile secretagogue-specific GH-regulatory mechanisms in older men.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652074 | PMC |
http://dx.doi.org/10.1152/ajpregu.00069.2013 | DOI Listing |
J Endocr Soc
January 2025
Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.
View Article and Find Full Text PDFAndrology
January 2025
Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK.
The hypothalamic-pituitary-gonadal axis is regulated by the gonadotropin-releasing hormone pulse generator in the hypothalamus. This is comprised of neurons that secrete kisspeptin in a pulsatile manner to stimulate the release of GnRH, and, in turn, downstream gonadotropins from the pituitary gland, and subsequently sex steroids and gametogenesis from the gonads. Many reproductive disorders in both males and females are characterized by hypothalamic dysfunction, including functional disorders (such as age-related hypogonadism, obesity-related secondary hypogonadism, hyperprolactinemia, functional hypothalamic amenorrhea and polycystic ovary syndrome), structural pathologies (such as craniopharyngiomas or radiation or surgery-related hypothalamic dysfunction), and pubertal disorders (constitutional delay of growth and puberty and congenital hypogonadotropic hypogonadism).
View Article and Find Full Text PDFThe specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation.
View Article and Find Full Text PDFPhysiol Rev
January 2025
Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.
Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which co-express NKB, regulate the activity of gonadotropin releasing hormone (GnRH) neurons, and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health.
View Article and Find Full Text PDFVet Res Commun
January 2025
Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
The current study investigated the effect of a single administration of human chorionic gonadotropin hormone (hCG) and its nanoparticles (NPs) on testicular hemodynamics using Doppler ultrasonography, testicular volume, testicular echotexture (PIX), and circulating testosterone and nitric oxide (NO) in pubescent goat bucks during summer months. Fifteen Baladi goats were divided into three groups (5 in each) and subjected to a single intramuscular administration of one ml of physiological saline ( control group), one ml containing 500 IU of hCG (hCG group) or one ml containing 125 IU of hCG NPs (hCG NPs group). Testicular hemodynamics assessment was done just before administration (0 h), and at 2, 4, 6, 24, and daily till 7 days after administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!