Theoretical study on low-lying electronic states of Kr2(+), Xe2(+), and Rn2(+).

J Chem Phys

Key Laboratory of Chemical Laser, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.

Published: March 2013

In this work, the equation-of-motion coupled-cluster approach with spin-orbit coupling (SOC) for ionization potentials (IP) at the singles and doubles level (EOMIP-CCSD) is employed to calculate spectroscopic constants of low-lying states of rare gas dimer ions Kr2(+), Xe2(+), and Rn2(+). Two approaches are proposed to include contributions of triples: (1) energies of these states are calculated by adding the IPs from EOMIP-CCSD and the CCSD(T) energy of the rare gas dimers and (2) CCSD(T) energies without SOC for Rg2(+) are first calculated and energies of these states with SOC are determined subsequently using the SOC matrix between these states. The first approach can provide accurate results for the three most stable states, while overestimates bond lengths for the other states. The second approach has been adopted previously and the SOC matrix element between (2)Σ1∕2 (+) and (2)Π1∕2 states was set to be 1/2 times that of the SOC constant. In our work, the SOC matrix elements are determined from the calculated IPs and reasonable results for these states can be achieved with this approach, which could be useful for experimental works.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4792435DOI Listing

Publication Analysis

Top Keywords

soc matrix
12
states
9
kr2+ xe2+
8
xe2+ rn2+
8
rare gas
8
energies states
8
soc
7
theoretical study
4
study low-lying
4
low-lying electronic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!