The detection and identification of volatile organic compounds (VOCs) is one of the most serious subjects in the field of chemical sensing, but it remains an enormous challenge. Usually, during the sensing of gases involved in chemical reactions, the residual gas of that reaction (including undecomposed analytes and reaction products) are considered waste gases and released into the air. Here, a novel cataluminescence (CTL) sensing method based on detection of the luminescent intensities of both the analyte (I(A)) and its products (I(R)) was developed and used to identify VOCs at different concentrations. After the analyte gas passed through the first sensing material, the product gas was treated as a new reactant and passed through the second sensing material (which could be the same as or different from the first material). The luminescent signals of I(A) and I(R) were recorded over a short period of time using one photomultiplier. We found the ratio of I(A) to I(R) (I(A)/I(R)) to be a unique characteristic of a given analyte within a wide range of concentrations. To illustrate the new method, 11 kinds of organic gases were successfully identified using I(A)/I(R) values. The most distinct feature of this method is that it allows the user to obtain many more luminescent signals from the sensing materials than common methods. It does so by allowing different flow channels of the analyte gas. This simple method here was used to discriminate different species, homologous series, and isomers in different concentrations. This method could be applied to chemical sensing arrays to increase the discrimination ability or decrease the number of sensing units required.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac400208kDOI Listing

Publication Analysis

Top Keywords

volatile organic
8
organic compounds
8
sensing
8
chemical sensing
8
analyte gas
8
sensing material
8
luminescent signals
8
method
5
development simple
4
simple cataluminescence
4

Similar Publications

Inclusion of Black Soldier Fly Larval Oil in Ruminant Diets Influences Feed Consumption, Nutritional Digestibility, Ruminal Characteristics, and Methane Estimation in Thai-Indigenous Steers.

J Anim Physiol Anim Nutr (Berl)

January 2025

Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.

View Article and Find Full Text PDF

Ecosystems and environments are impacted by atmospheric pollution, which has significant effects on human health and climate. For these reasons, devices for developing portable and low-cost monitoring systems are required to assess human exposure during daily life. In the last decade, the advancements of 3D printing technology have pushed researchers to exploit, in different fields of applications, the advantages offered, such as rapid prototyping and low-cost replication of complex sample treatment devices.

View Article and Find Full Text PDF

Characterization of the Different Chemical Components and Nutritional Properties of Two Species.

Foods

January 2025

Research Group of Food Quality and Safety, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Ctra. Beniel, km 3.2, 03312 Orihuela, Spain.

This study aimed to investigate the nutritional value and potential for herbal tea production of two species . The analysis includes the quantification of lipids, proteins, organic acids (HPLC-MS), sugars (HPLC-MS), phenolic compounds (HPLC-MS-MS), volatile compounds (GC-MS), fatty acids (GC-MS), amino acids (HPLC-MS-MS), some minerals (ICP-MS), total phenolic content, and antioxidant activities of flowers (EBF) and thorns (EBT), as well as flowers (EPF) and thorns (EPT). The results indicate that EPF and EPT exhibit elevated levels of protein (11.

View Article and Find Full Text PDF

The development of plant-based meat substitutes is imperative for reducing animal fat intake and promoting dietary diversification. However, the flavor profiles of these products frequently fall short of consumer expectations. This study sought to optimize the production process of meat flavorings for plant-based products using the Taguchi method.

View Article and Find Full Text PDF

Residual Nitrite, Nitrate, and Volatile N-Nitrosamines in Organic and Conventional Ham and Salami Products.

Foods

January 2025

Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.

Nitrite and nitrate in meat products may be perceived negatively by consumers. These compounds can react to form carcinogenic volatile N-nitrosamines. "Nitrite-free" (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!