Recently, we identified 1-aminoanthracene as a fluorescent general anesthetic. To investigate the mechanism of action, a photoactive analogue, 1-azidoanthracene, was synthesized. Administration of 1-azidoanthracene to albino stage 40-47 tadpoles was found to immobilize animals upon near-UV irradiation of the forebrain region. The immobilization was often reversible, but it was characterized by a longer duration consistent with covalent attachment of the ligand to functionally important targets. IEF/SDS-PAGE examination of irradiated tadpole brain homogenate revealed labeled protein, identified by mass spectrometry as β-tubulin. In vitro assays with aminoanthracene-cross-linked tubulin indicated inhibition of microtubule polymerization, similar to colchicine. Tandem mass spectrometry confirmed anthracene binding near the colchicine site. Stage 40-47 tadpoles were also incubated 1 h with microtubule stabilizing agents, epothilone D or discodermolide, followed by dosing with 1-aminoanthracene. The effective concentration of 1-aminoanthracene required to immobilize the tadpoles was significantly increased in the presence of either microtubule stabilizing agent. Epothilone D similarly mitigated the effects of a clinical neurosteroid general anesthetic, allopregnanolone, believed to occupy the colchicine site in tubulin. We conclude that neuronal microtubules are "on-pathway" targets for anthracene general anesthetics and may also represent functional targets for some neurosteroid general anesthetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671381 | PMC |
http://dx.doi.org/10.1021/ja311171u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!