Introduction: Recent advances in computational methods and medical imaging techniques have enabled non-invasive exploration of cardiovascular pathologies, from cardiac level to complex arterial networks. The potential of cardiac and vascular modeling in guiding and monitoring therapies could be further extended through the integration of the two systems.
Areas Covered: This review includes advances in methods for cardiac electromechanics and vascular flow simulations. The results of a literature search depicting the state of the art in cardiac and vascular modeling are reviewed. The paper goes on to address the benefits and challenges of combined cardiovascular modeling, highlighting the relevance of specific cardiovascular features and implementation. Various alternative approaches and insights on future directions are presented and analyzed with respect to their applicability to clinical practice.
Expert Opinion: The article has emerged from the exploration of currently available cardiac and vascular mathematical tools and their corresponding clinical application. The summarized analysis suggests that future efforts should be aimed at developing more accurate and patient-specific mathematical models integrating cardiac and vascular functions to enhance the knowledge of cardiovascular pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17530059.2011.616195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!