Fibrinogen like protein 1(Fgl1) is a secreted protein with mitogenic activity on primary hepatocytes. Fgl1 is expressed in the liver and its expression is enhanced following acute liver injury. In animals with acute liver failure, administration of recombinant Fgl1 results in decreased mortality supporting the notion that Fgl1 stimulates hepatocyte proliferation and/or protects hepatocytes from injury. However, because Fgl1 is secreted and detected in the plasma, it is possible that the role of Fgl1 extends far beyond its effect on hepatocytes. In this study, we show that Fgl1 is additionally expressed in brown adipose tissue. We find that signals elaborated following liver injury also enhance the expression of Fgl1 in brown adipose tissue suggesting that there is a cross talk between the injured liver and adipose tissues. To identify extra hepatic effects, we generated Fgl1 deficient mice. These mice exhibit a phenotype suggestive of a global metabolic defect: Fgl1 null mice are heavier than wild type mates, have abnormal plasma lipid profiles, fasting hyperglycemia with enhanced gluconeogenesis and exhibit differences in white and brown adipose tissue morphology when compared to wild types. Because Fgl1 shares structural similarity to Angiopoietin like factors 2, 3, 4 and 6 which regulate lipid metabolism and energy utilization, we postulate that Fgl1 is a member of an emerging group of proteins with key roles in metabolism and liver regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590190 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058084 | PLOS |
Diabetes
January 2025
Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation.
View Article and Find Full Text PDFMol Metab
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications.
View Article and Find Full Text PDFPhytomedicine
January 2025
The Second Hospital of Shandong University, Jinan, Shandong, PR China; Advanced Medical Research Institute, Shandong University, Shandong University, Jinan, Shandong, PR China. Electronic address:
Background: The prevalence of obesity and its associated diseases has sharply increased, becoming a global health issue. White adipose tissue (WAT), responsible for lipid storage via hyperplasia and hypertrophy, and brown adipose tissue (BAT), which facilitates energy dissipation, have increasingly been recognized as critical regulators of weight loss. Shouhui Tongbian Capsule (SHTB) has traditionally been used for detoxification, weight loss, and lipid reduction, and clinical evidence supports its use for relieving constipation.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
Background: The human gut microbiome strongly influences host metabolism by fermenting dietary components into metabolites that signal to the host. Our previous work has shown that Intestinimonas butyriciproducens is a prevalent commensal bacterium with the unique ability to convert dietary fructoselysine to butyrate, a well-known signaling molecule with proven health benefits. Dietary fructoselysine is an abundant Amadori product formed in foods during thermal treatment and is part of foods rich in dietary advanced glycation end products which have been associated with cardiometabolic disease.
View Article and Find Full Text PDFJ Endocrinol
January 2025
V Dubois, Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Glucocorticoids and androgens affect each other in several ways. In metabolic organs such as adipose tissue and the liver, androgens enhance glucocorticoid-induced insulin resistance and promote fat accumulation in male mice. However, the direct contribution of the androgen receptor (AR) to these effects is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!