In Brazil, imidacloprid is a widely used insecticide on agriculture and can harm bees, which are important pollinators. The active ingredient imidacloprid has action on the nervous system of the insects. However, little has been studied about the actions of the insecticide on nontarget organs of insects, such as the Malpighian tubules that make up the excretory and osmoregulatory system. Hence, in this study, we evaluated the effects of chronic exposure to sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera. In the tubules of treated bees, we found an increase in the number of cells with picnotic nuclei, the lost of part of the cell into the lumen, and a homogenization of coloring cytoplasm. Furthermore, we observed the presence of cytoplasmic vacuolization. We confirmed the increased occurrence of picnotic nuclei by using the Feulgan reaction, which showed the chromatin compaction was more intense in the tubules of bees exposed to the insecticide. We observed an intensification of the staining of the nucleus with Xylidine Ponceau, further verifying the cytoplasmic negative regions that may indicate autophagic activity. Additionally, immunocytochemistry experiments showed TUNEL positive nuclei in exposed bees, implicating increased cell apoptosis after chronic imidacloprid exposure. In conclusion, our results indicate that very low concentrations of imidacloprid lead to cytotoxic activity in the Malpighian tubules of exposed bees at all tested times for exposure and imply that this insecticide can alter honey bee physiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.22199 | DOI Listing |
Cell Rep
December 2024
Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. Electronic address:
An excessive immune response damages organs, yet its molecular mechanism is incompletely understood. Here, we screened a factor mediating organ damage upon genetic activation of the innate immune pathway using Drosophila renal tubules. We found that an antimicrobial peptide, Attacin-D (AttD), causes organ damage upon immune deficiency (Imd) pathway activation in the Malpighian tubules.
View Article and Find Full Text PDFCell Rep
December 2024
Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China. Electronic address:
cGAS-like receptor (cGLR)-stimulator of interferon genes (STING) recently emerged as an important pathway controlling viral infections in invertebrates. However, its exact contribution at the organismal level remains uncharacterized. Here, we use STING::GFP knockin reporter Drosophila flies to document activation of the pathway in vivo.
View Article and Find Full Text PDFMolecules
December 2024
Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès, Spain.
Reproductive toxicity is of special concern among the harmful effects induced by environmental pollutants; consequently, further studies on such a topic are required. To avoid the use of mammalians, lower eukaryotes like are viable alternatives. This study addresses the gap in understanding the link between reproductive adverse outcomes and the presence of pollutants in reproductive organs by using Silver nanoparticles (AgNPs) were selected for their ease of internalization, detection, and widespread environmental presence.
View Article and Find Full Text PDFBiol Open
December 2024
Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
Renal diseases, including cancer, are rapidly increasing worldwide, driven by rising temperatures and changing diets, especially among younger people. Renal stones, a major risk for chronic renal disease, are increasingly common due to various health issues. Research on the underlying mechanisms, drug discovery, and the effects of aging and stress is limited.
View Article and Find Full Text PDFJ Insect Physiol
December 2024
USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA. Electronic address:
Diuretic hormones (DHs) activate corresponding G protein-coupled receptors (GPCRs), mediating the water and ion homeostasis in arthropods. There are two different DHs known to be expressed in insects, calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized a DH44 and five GPCR variants, DH44-R1 and DH44-R2a/b/c/d, in Drosophila suzukii (spotted-wing drosophila), causing detrimental damage to fresh and soft-skinned fruits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!