A lasing peak shift of more than 100 nm is realized due to the large shift of a photonic bandgap of a liquid-crystalline blue phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201204591 | DOI Listing |
J Phys Chem Lett
January 2025
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
Circularly polarized luminescence (CPL) materials have drawn increasing attention for their potential applications in optical displays and chemo/biosensing. Nevertheless, the construction of circularly polarized room-temperature phosphorescence (CPRTP) materials is still a significant challenge. In this work, four liquid crystalline polymer network films with RTP properties have been fabricated via photopolymerization of cholesteric liquid-crystalline mixtures containing different amounts of commercially available dyes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Dankook University, 119, Dandae-ro, Chungnam 448-701, Korea.
This paper presents the reversible transformation between two polymorphs of a hexacatenar liquid crystal () with distinct fluorescence colors at room temperature (RT). This method utilizes mechanical pressure (mechanochromism) and an electric field (E-field-chromism). The molecule (), designed with a pyrene core and 1,2,3-triazole linkers, exhibits a blue-emissive crystalline (CRY) polymorph () and a green-emissive liquid crystalline (LC) polymorph () at RT, depending on the cooling rate from the liquid phase.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
Cellulose nanocrystals (CNCs) are known to self-assemble into a left-handed chiral nematic lyotropic liquid crystalline phase in water. When captured in the solid state, this structure can impart films with photonic properties that make them promising candidates in photonics, sensing, security, and other areas. Unfortunately, the intrinsic hydrophilicity of CNCs renders these iridescent films susceptible to moisture, thereby limiting their practicality.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
National Institute of Advanced Industrial Science and Technology, Research Center for Computational Design of Advanced Functional Materials, Tsukuba, Ibaraki 305-8568, Japan.
Materials (Basel)
October 2024
Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland.
The results of an experimental investigation of the temperature and wavelength dependence of the Kerr constant () of mixtures with an increasing amount of chiral dopant in an isotropic liquid crystal phase are reported. The material was composed of a nematic liquid crystal (5CB) and a chiral dopant (CE2), which formed non-polymer-stabilized liquid crystalline blue phases with an exceptionally large value of ∼2 × 10 mV. The measurements were performed on liquid and blue phases at several concentrations covering a range of temperatures and using three wavelengths: 532 nm, 589 nm and 633 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!