The degree to which electroencephalographic spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2-35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586764 | PMC |
http://dx.doi.org/10.3389/fnhum.2013.00056 | DOI Listing |
Sci Rep
January 2025
Department of Life Sciences, The University of Tokyo, Tokyo, Japan.
Many theories of time perception propose the existence of an internal pacemaker, and studies across behavioral, physiological, and neuroscience fields have explored this concept. Specifically, Spontaneous Motor Tempo (SMT), the most comfortable and natural tapping tempo for each individual, is thought to reflect this internal pacemaker's tempo. Changes in heart rate are also linked to time estimation, while Individual Alpha Frequency (IAF), the peak in the alpha range (8-13 Hz) observed in EEG, is reported to reflect the brain's temporal processing.
View Article and Find Full Text PDFFood Chem
January 2025
SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, PR China. Electronic address:
The conversion of alpha-linolenic acid (ALA) in feed to DHA in egg is inefficient, so there is a critical need for feed additives that can enhance the enrichment of docosahexaenoic acid (DHA) in egg yolk from ALA-rich feed. The present study evaluated the impact of dietary fucoxanthin on the conversion efficiency of ALA in feed to DHA in quail egg yolk. Results showed that the addition of 0.
View Article and Find Full Text PDFFood Chem
January 2025
Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China. Electronic address:
β-Cyclodextrin (β-CD) enhances functional properties by forming inclusion complexes (ICs). This study employed β-CD to form IC with fatty acid ethyl ester (FAEE) for concentrating α-Linolenic acid ethyl ester (ALAEE) from flaxseed oil FAEE, and investigated the interaction mechanisms between β-CD and ALAEE. Using the single-factor method, optimal inclusion conditions yielded an inclusion rate of 61.
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Neurology, Shandong Provincial Third Hospital, Shandong University Jinan 250031, Shandong, China.
Objective: To evaluate the efficacy of butylphthalein injection combined with alteplase thrombolysis in patients with acute cerebral infarction (ACI) and its effects on lipoprotein-associated phospholipase A2 (Lp-PLA2) and CXC chemokine ligand 16 (CXCL16) levels.
Methods: A total of 127 ACI patients admitted to Shandong Provincial Third Hospital between March 2020 and June 2023 were included and divided into a butylphthalein group (n = 67) and a control group (n = 60) based on their treatment regimen. All patients received basic treatment.
Biomed Phys Eng Express
January 2025
Department of Medical Physics, Osaka Heavy Ion Therapy Center, Otemae, Chuo-ku, Osaka, Osaka, 5400008, JAPAN.
Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!