A nanocluster composite assembled by interconnected ultrafine SnO2-C core-shell (SnO2@C) nanospheres is successfully synthesized via a simple one-pot hydrothermal method and subsequent carbonization. As an anode material for lithium-ion batteries, the thus-obtained nano-construction can provide a three-dimensional transport access for fast transfer of electrons and lithium ions. With the mixture of sodium carboxyl methyl cellulose and styrene butadiene rubber as a binder, the SnO2@C nanocluster anode exhibits superior cycling stability and rate capability due to a stable electrode structure. Discharge capacity reaches as high as 1215 mA h g(-1) after 200 cycles at a current density of 100 mA g(-1). Even at 1600 mA g(-1), the capacity is still 520 mA h g(-1) and can be recovered up to 1232 mA h g(-1) if the current density is turned back to 100 mA g(-1). The superior performance can be ascribed to the unique core-shell structure. The ultrafine SnO2 core gives a high reactive activity and accommodates volume change during cycling; while the thin carbon shell improves electronic conductivity, suppresses particle aggregation, supplies a continuous interface for electrochemical reaction and alleviates mechanical stress from repeated lithiation of SnO2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr34133j | DOI Listing |
Adv Mater
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
Biosensors (Basel)
December 2024
Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain.
Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the development of a hybrid biosensor platform for the ultrasensitive detection of endoglin, aimed at enabling the early diagnosis of preeclampsia.
View Article and Find Full Text PDFAnalyst
December 2024
School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250100, China.
Angew Chem Int Ed Engl
November 2024
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
It is promising but still challenging for the widespread application of aqueous zinc batteries due to the poor reversibility of the zinc anode caused by prevalent dendrite growth and pronounced interfacial side reactions. Herein, we report a rare soluble and water-stable high-nuclearity {NdSiW} polyoxotungstate. Interestingly, upon encountering Zn ions, the discrete {NdSiW} nanocluster undergoes a structural transformation to form an infinitely extended cluster-based {[Zn(HO)][NdSiW]} two-dimensional honeycomb layer, with which atomic-level Zn ion effects in reconstructing the layer are determined.
View Article and Find Full Text PDFNanoscale
January 2025
Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
The photoelectrochemical (PEC) water splitting reaction of bimetallic AuCu ( = 1, 0.75, 0.5, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!