Hollow-core fibers (HCFs) are a revolution in light guidance with enormous potential. They promise lower loss than any other waveguide, but have not yet achieved this potential because of a tradeoff between loss and single-moded operation. This paper demonstrates progress on a strategy to beat this tradeoff: we measure the first hollow-core fiber employing Perturbed Resonance for Improved Single Modedness (PRISM), where unwanted modes are robustly stripped away. The fiber has fundamental-mode loss of 7.5 dB/km, while other modes of the 19-lattice-cell core see loss >3000 dB/km. This level of single-modedness is far better than previous 19-cell or 7-cell HCFs, and even comparable to some commercial solid-core fibers. Modeling indicates this measured loss can be improved. By breaking the connection between core size and single-modedness, this first PRISM demonstration opens a new path towards achieving the low-loss potential of HCFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.006233 | DOI Listing |
Sensors (Basel)
December 2024
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China.
A highly sensitive sensor, which can detect the temperature and strain simultaneously, is proposed using a hollow-core anti-resonant fiber with composite nested tubes. The sensing fiber contains two kinds of nested tubes, and two different sensing mechanisms, the resonance coupling effect and the intermodal interference, are realized in the same section of a hollow-core anti-resonant fiber fully filled with ethanol. Five conjoined nested anti-resonant tubes are introduced to suppress the confinement loss of the higher-order mode LP.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Savannah River National Laboratory, 301 Gateway Drive, Aiken, SC 29803, USA.
An innovative solution for real-time monitoring of reactions within confined spaces, optimized for Raman spectroscopy applications, is presented. This approach involves the utilization of a hollow-core waveguide configured as a compact flow cell, serving both as a conduit for Raman excitation and scattering and seamlessly integrating into the effluent stream of a cracking catalytic reactor. The analytical technique, encompassing device and optical design, ensures robustness, compactness, and cost-effectiveness for implementation into process facilities.
View Article and Find Full Text PDFWe have developed an effective one-step extrusion method to prepare a nodeless chalcogenide hollow-core anti-resonance fiber, characterized by excellent symmetry and less requirements for drawing pressure in achieving the desired wall thickness. The resulting fiber exhibits excellent uniformity, with an ultra-large effective mode area of 21970 µm and a low overlap factor of = 0.03%.
View Article and Find Full Text PDFIn large-area quantum networks based on optical fibers, photons are the fundamental carriers of information as so-called flying qubits. They may also serve as the interconnect between different components of a hybrid architecture, which might comprise atomic and solid-state platforms operating at visible or near-infrared wavelengths, as well as optical links in the telecom band. Quantum frequency conversion is the pathway to change the color of a single photon while preserving its quantum state.
View Article and Find Full Text PDFNanophotonics
March 2024
Department of Physics & Astronomy, University of California, Irvine, CA 92697, USA.
Hollow core optical fibers of numerous guiding mechanisms have been studied in the past decades for their advantages on guiding light in air core. This work demonstrates a new hollow core optical fiber based on a different guiding mechanism, which confines light with a cladding made of epsilon-near-zero (ENZ) material through total internal reflection. We show that the addition of a layer of ENZ material coating (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!