Efficient three-photon luminescence with strong polarization dependence from a scintillating silicate glass co-doped with Gd3+ and Tb3+.

Opt Express

Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.

Published: March 2013

Efficient three-photon luminescence (3PL) from a scintillating silicate glass co-doped with Gd(3+) and Tb(3+) was generated by using a focused femtosecond laser beam at 800 nm. Four emission bands centered at 496, 541, 583, and 620 nm were identified as the electronic transitions between the energy levels of Tb(3+) followed by three-photon absorption (3PA) in Gd(3+) and Tb(3+) and the resonant energy transfer from Gd(3+) to Tb(3+). More interestingly, a strong polarization dependence of the 3PL was observed and it is ascribed to the polarization dependent 3PA in Gd(3+) and Tb(3+) and/or the angular distribution of photogenerated electrons in the glass.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.006020DOI Listing

Publication Analysis

Top Keywords

gd3+ tb3+
20
efficient three-photon
8
three-photon luminescence
8
strong polarization
8
polarization dependence
8
scintillating silicate
8
silicate glass
8
glass co-doped
8
co-doped gd3+
8
3pa gd3+
8

Similar Publications

Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer.

J Am Chem Soc

January 2025

Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs.

View Article and Find Full Text PDF

Use of Luminescence Modulation in a New Series of Mixed Lanthanide Metal-Organic Frameworks for Selective Firearm Ammunition Marking.

ACS Omega

December 2024

Grupo de Química de Coordenação e Espectroscopia de Lantanídeos (GQCEL), Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20550-013, Brazil.

Article Synopsis
  • Metal-organic frameworks (MOFs), particularly mixed lanthanide MOFs (m-LnMOFs), are complex compounds that combine different lanthanide ions for tunable luminescence across the visible spectrum.
  • Researchers have developed a new series of m-LnMOFs using 1,2,4,5-benzenetetracarboxylic acid, with detailed characterization and photophysical studies conducted.
  • These m-LnMOFs have high thermal stability and multicolored emissions, making them useful as selective ammunition markers for forensic identification and improving ammunition trade regulation.
View Article and Find Full Text PDF

The application of upconversion nanomaterials relies heavily on the ability to produce bright upconversion luminescence (UCL) or high upconversion quantum yields (UCQYs) at low power density excitation. Herein, we synthesized silica-coated NaYF:Yb@NaGdF:Tm@NaYF:Tb upconversion nanoparticles (UCNPs) and CsPbI perovskites quantum dots (PeQDs) nanocomposites by the slow hydrolysis of (3-aminopropyl)triethoxysilane. The energy transfer (ET) of Gd→Tb accelerates the five-photon upconversion process of Yb-Tm and the design of the core@shell@shell layer effectively mitigates the energy jumps between Gd ions.

View Article and Find Full Text PDF

A novel method for synthesizing dumbbell-shaped (GdTb)O(CO)·HO (GOC:Tb) phosphors using sodium carbonate was investigated. An amount of 1 mmol of stable fluorescent powder can be widely prepared using 3-11 mmol of NaCO at a pH value of 8.5-10.

View Article and Find Full Text PDF

Lanthanide metal-organic frameworks (Ln-MOFs) have excellent optical properties and structural diversity, providing a unique platform for the development of fluorescent sensing and optical materials. In the work described herein, a series of isostructural 3D Ln-MOFs [Ln(L)(HO)]·2HO (Ln = Eu (), Gd (), Tb (), HL = 3,3',3″-[1,3,5-benzenetriyltris(carbonylimino)]tris-benzoate) are fabricated under solvothermal conditions. The good thermal, water, and acid-base stabilities of are prerequisites for fluorescent sensing applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!