We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.004560 | DOI Listing |
In this study, we present an unexplored approach for remote focus manipulation using 3D nanoprinted holograms integrated on the end face of multi-core single-mode fibers. This innovative method enables precise focus control within a monolithic metafiber device by allowing light coupled into any of the 37 cores to be precisely focused at predefined locations. Our approach demonstrates significant advances over conventional lenses and offers unique functionalities through computationally designed holograms.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.
Quinoa flour due to its nutritional and sensory characteristics could be used as an ingredient to improve the nutritional and technological properties of gluten-free bread. Furthermore, the application of hydrothermal processes such as extrusion can enhance their native properties. Hence, our objective was to evaluate how the incorporation of extruded quinoa flours (EQFs) affects the technological, sensory and nutritional quality of gluten-free bread.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangdong University of Technology, Guangzhou, 510006, China.
Common-signal-induced synchronization of semiconductor lasers have promising applications in physical-layer secure transmission with high speed and compatibility with the current fiber communication. Here, we propose an ultra-long-distance laser synchronization scheme by utilizing random digital optical communication signal as the common drive signal. By utilizing the long-haul optical coherent communication techniques, high-fidelity fiber transmission of the digital drive can be achieved and thus ultra-long-distance synchronization is expected.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, Stanford University, Stanford, CA 93405, USA.
Distributed feedback lasers, which feature rapid wavelength tunability, are not presently available in the yellow and orange spectral regions, impeding spectroscopic studies of short-lived species that absorb light in this range. To meet this need, a rapidly tunable laser system was constructed, characterized, and demonstrated for measurements of the NH radical at 597.4 nm.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!