Sagnac fiber interferometer with the dynamic population grating formed in the rare-earth doped fiber is proposed for homodyne adaptive detection of optical phase modulation. The configuration is shown to be a simple all-optical fiber sensor suitable for linear high sensitivity detection of mechanical vibrations, acoustic signals, thermo-optic effect etc. Theoretical consideration shows that the quadratic response of this interferometric configuration associated with the amplitude dynamic grating is observed in the reflected wave mainly, while the recorded phase grating results in the linear energy exchange between the transmitted and reflected from the Sagnac loop light waves. Experiments with the erbium- and ytterbium-doped fiber based adaptive Sagnac configurations (with the operation wavelengths 1485 and 1,064 nm respectively) of the fiber accelerometers confirmed these general conclusions and demonstrated sensitivity of the fiber based interferometric configurations (~3 10⁻⁵ rad/Hz¹/²) governed basically by the noise of the utilized lasers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.004280 | DOI Listing |
This work has implemented a diverse modification of the Sagnac interferometer to accommodate various measurement requirements, including phase shifting, pattern recognition, and a morphological analysis. These modifications were introduced to validate the adaptability and versatility of the system. To enable phase shifting using the multiple light reflection technique, a half-wave plate (HWP) was utilized with rotations at 0, /8, /4, and 3/8 radians, generating four interference patterns.
View Article and Find Full Text PDFIn non-Hermitian systems, enhancing sensitivity under exceptional point (EP) conditions offers an ideal solution for reconciling the trade-off between sensitivity and size constraints in sensing applications. However, practical application is limited by undesired sensitivity to external fluctuations, noise, and errors in signal amplification synchronization. This paper presents a precisely controlled EP tracking and detection system (EPTDS) that achieves long-term rapid tracking and locking near the EP by constructing a second-order non-Hermitian optical sensing unit, employing an optical power adaptive control method, and utilizing a combinatorial demodulation-based dual-loop cascaded control (CDCC) technique to selectively suppress traditional noise at different frequencies.
View Article and Find Full Text PDFLight Sci Appl
November 2023
Attosecond Science Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
The carrier-envelope phase (CEP) of an ultrashort laser pulse is becoming more crucial to specify the temporal characteristic of the pulse's electric field when the pulse duration becomes shorter and attains the subcycle regime; here, the pulse duration of the intensity envelope is shorter than one cycle period of the carrier field oscillation. When this subcycle pulse involves a structured wavefront as is contained in an optical vortex (OV) pulse, the CEP has an impact on not only the temporal but also the spatial characteristics owing to the spatiotemporal coupling in the structured optical pulse. However, the direct observation of the spatial effect of the CEP control has not yet been demonstrated.
View Article and Find Full Text PDFHigh-performance angular accelerometers are essential for precise dynamics control of aircraft, satellites, etc. Here, we propose, for the first time to the best of our knowledge, an angular accelerometer based on a dual-polarization fiber-optic Sagnac interferometer, which exhibits relatively high sensitivity and a broad bandwidth. The experimental results show that the angular accelerometer achieves a flat frequency response in the bandwidth range of 0.
View Article and Find Full Text PDFWe propose a new method to detect latent fingerprints and their residues based on Sagnac ultraviolet Fourier transform imaging spectroscopy. The three-dimensional data cube including two-dimensional images and spectrum dimensions can be obtained by the new hyperspectral imaging technique. The method to inhibit the redundancy from the spectra-image data is also presented, which includes the self-adaptive differential filtering, the apodization algorithm, and a fast Fourier transform method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!