Challenges and opportunities in restoring function after paralysis.

IEEE Trans Biomed Eng

Louis Stokes Cleveland Department of Veterans Affairs Medical Center, the Cleveland Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH 44109, USA.

Published: March 2013

Neurotechnology has made major advances in development of interfaces to the nervous system that restore function in paralytic disorders. These advances enable both restoration of voluntary function and activation of paralyzed muscles to reanimate movement. The technologies used in each case are different, with external surface stimulation or percutaneous stimulation generally used for restoration of voluntary function, and implanted stimulators generally used for neuroprosthetic restoration. The opportunity to restore function through neuroplasticity has demonstrated significant advances in cases where there are retained neural circuits after the injury, such as spinal cord injury and stroke. In cases where there is a complete loss of voluntary neural control, neural prostheses have demonstrated the capacity to restore movement, control of the bladder and bowel, and respiration and cough. The focus of most clinical studies has been primarily toward activation of paralyzed nerves, but advances in inhibition of neural activity provide additional means of addressing the paralytic complications of pain and spasticity, and these techniques are now reaching the clinic. Future clinical advances necessitate having a better understanding of the underlying mechanisms, and having more precise neural interfaces that will ultimately allow individual nerve fibers or groups of nerve fibers to be controlled with specificity and reliability. While electrical currents have been the primary means of interfacing to the nervous system to date, optical and magnetic techniques under development are beginning to reach the clinic, and provide great opportunity. Ultimately, techniques that combine approaches are likely to be the most effective means for restoring function, for example combining regeneration and neural plasticity to maximize voluntary activity, combined with neural prostheses to augment the voluntary activity to functional levels of performance. It is a substantial challenge to bring any of these techniques through clinical trials, but as each of the individual techniques is sufficiently developed to reach the clinic, these present great opportunities for enabling patients with paralytic disorders to achieve substantial independence and restore their quality of life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046583PMC
http://dx.doi.org/10.1109/TBME.2013.2245128DOI Listing

Publication Analysis

Top Keywords

restoring function
8
nervous system
8
restore function
8
paralytic disorders
8
restoration voluntary
8
voluntary function
8
activation paralyzed
8
neural prostheses
8
nerve fibers
8
reach clinic
8

Similar Publications

Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1.

View Article and Find Full Text PDF

Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.

View Article and Find Full Text PDF

This study examined the effects of treadmill running (TR) regimens on craniofacial pain- and anxiety-like behaviors, as well as their effects on neural changes in specific brain regions of male mice subjected to repeated social defeat stress (SDS) for 10 days. Behavioral and immunohistochemical experiments were conducted to evaluate the impact of TR regimens on SDS-related those behaviors, as well as epigenetic and neural activity markers in the anterior cingulate cortex (ACC), insular cortex (IC), rostral ventromedial medulla (RVM), and cervical spinal dorsal horn (C2). Behavioral responses were quantified using multiple tests, while immunohistochemistry measured histone H3 acetylation, histone deacetylases (HDAC1, HDAC2), and neural activity markers (FosB and phosphorylated cAMP response element-binding protein (pCREB).

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!