Background: Hirschsprung's (HSCR) disease is characterized by absence of ganglia in the distant bowel. Skin-derived precursor cells (SKPs) are somatic stem cells located in the bulge of hair follicles with high neural plasticity. In this study, we elucidated the therapeutic potential of SKPs for replenishing absent ganglia in HSCR bowel.

Methods: SKPs were isolated from mouse or human skin and cultured in neural differentiation medium to generate various types of neural cells. Expression of stem cell and neural differentiation markers were monitored by reverse-transcription polymerase chain reaction and immunocytochemistry, respectively. Engraftment and differentiation potentials of SKPs were further assessed using ex vivo gut culture with Ret(k/k) aganglionic gut.

Results: Expression studies revealed that SKPs express a panel of neural crest markers and three key stemness factors (Klf4, c-Myc and Sox2), which may account for the multipotency of these cells. Subsequent differentiation assays directly demonstrated that both mouse and human SKPs retain high differentiation capacities to form enteric neurons, and glia. Importantly, with ex vivo gut explants assay, we further showed that SKPs colonize and differentiate in the Ret(k/k) aganglionic hindgut explants.

Conclusion: Our data suggest that SKPs may represent an alternative source of stem cells for the study of cell-based therapy for HSCR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpedsurg.2012.08.026DOI Listing

Publication Analysis

Top Keywords

skps
9
stem cells
8
mouse human
8
neural differentiation
8
vivo gut
8
retk/k aganglionic
8
cells
5
neural
5
differentiation
5
potential skin-derived
4

Similar Publications

Unveiling the molecular blueprint of SKP-SCs-mediated tissue engineering-enhanced neuroregeneration.

J Nanobiotechnology

December 2024

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.

Peripheral nerve injury poses a significant challenge to the nervous system's regenerative capacity. We previously described a novel approach to construct a chitosan/silk fibroin nerve graft with skin-derived precursor-induced Schwann cells (SKP-SCs). This graft has been shown to promote sciatic nerve regeneration and functional restoration to a level comparable to that achieved by autologous nerve grafts, as evidenced by behavioral, histological, and electrophysiological assessments.

View Article and Find Full Text PDF

Skin-derived precursor (SKPs) cells are multipotent stem cells found in the dermis that contribute to wound healing and induce hair follicle neogenesis when transplanted. The clinical application of adult human SKPs, however, is hindered by their loss of potency after in vitro expansion. To overcome this challenge, we aimed to isolate SKPs from human-induced pluripotent stem cell-derived skin organoids (SKOs), to enable mass production of these cells for therapeutics.

View Article and Find Full Text PDF

Dermal Papilla Cells: From Basic Research to Translational Applications.

Biology (Basel)

October 2024

School of Life Sciences, Shanghai University, Shanghai 200444, China.

As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual's health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for many people.

View Article and Find Full Text PDF

Introduction: Corneal endothelial transplantation accounts for most of corneal transplantation for treating corneal diseases, however severe shortage of corneal donors is the biggest obstacle. In our previous study, we differentiated human skin-derived precursors (SKPs) into corneal endothelial cell (CEC)-like cells with a co-culture system. In this study, we aimed to investigate cell differentiation molecular mechanism and evaluate the function of CEC-like cells by developing tissue-engineered corneas in order to improve cell production efficiency and provide basic research for clinical transformation.

View Article and Find Full Text PDF

Hybrid construction of tissue-engineered nerve graft using skin derived precursors induced neurons and Schwann cells to enhance peripheral neuroregeneration.

Mater Today Bio

October 2024

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, PR China.

Peripheral nerve injury is a major challenge in clinical treatment due to the limited intrinsic capacity for nerve regeneration. Tissue engineering approaches offer promising solutions by providing biomimetic scaffolds and cell sources to promote nerve regeneration. In the present work, we investigated the potential role of skin-derived progenitors (SKPs), which are induced into neurons and Schwann cells (SCs), and their extracellular matrix in tissue-engineered nerve grafts (TENGs) to enhance peripheral neuroregeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!