Background: Endoplasmic reticulum stress (ERS), the unfolded protein response (UPR) and apoptosis signal transduction pathways are fundamental to normal cellular homeostasis and survival, but are exploited by cancer cells to promote the cancer phenotype.
Objective: Collateral activation of ERS and UPR role players impact on cell growth, cell cycle arrest or apoptosis, genomic stability, tumour initiation and progression, tumour aggressiveness and drug resistance. An understanding of these processes affords promising prospects for specific cancer drug targeting of the ERS, UPR and apoptotic pathways.
Method: This review (Part II of II) brings forward the latest developments relevant to the molecular connections among cell cycle regulators, caspases, NF-κB, and the proteasome with ERS and UPR signalling cascades, their functions in apoptosis induction, apoptosis resistance and oncogenesis, and how these relationships can be exploited for targeted cancer therapy.
Conclusion: Overall, ERS, the UPR and apoptosis signalling cascades (the molecular therapeutic targets) and the development of drugs that attack these targets signify a success story in cancer drug discovery, but a more reductionist approach is necessary to determine the precise molecular switches that turn on antiapoptotic and pro-apoptotic programmes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17460440903055032 | DOI Listing |
J Pharm Anal
November 2024
Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology, and Ecological Research Institute, Soochow University, Suzhou, 215123, China. Electronic address:
Grass carp reovirus (GCRV) belongs to the genus Aquareovirus and is responsible for causing serious hemorrhagic disease in grass carp (Ctenopharyngodon idella), characterized by high mortality rates. Numerous animal viruses have been shown to activate endoplasmic reticulum stress (ERS). However, the potential for GCRV infection to induce ERS and its implications for viral infection remain unclear.
View Article and Find Full Text PDFInflammation
October 2024
Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
Mol Biol Rep
September 2024
Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran.
Background: Misfolded proteins accumulate in the liver due to endoplasmic reticulum stress (ERS) caused by high blood glucose levels in diabetes. This triggers the unfolded protein response (UPR), which if persistently activated, results in cellular dysfunction. Chronic ER stress increases inflammation, insulin resistance, and apoptosis.
View Article and Find Full Text PDFFront Pharmacol
August 2024
College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!