Wheat germ cell-free technology for accelerating the malaria vaccine research.

Expert Opin Drug Discov

Ehime University, Cell-free Science and Technology Research Center, 3 Bunkyo-cho, Matsuyama, 790-8577, Japan +81 89 927 8277 ; +81 89 927 9941 ;

Published: November 2009

Background: Malaria causes about 300 million illnesses and 1 million deaths annually. The likeliest scenario is the aggravation of this disease due to the re-emergence of drug-resistant parasites and insecticide-resistant mosquitoes. One of the promising solutions to this disease are vaccines. However, until now, not even a single licensed malaria vaccine has been developed despite intensive efforts. Even the efficacy of RTS,S, the most advanced vaccine candidate in the pipeline of malaria vaccine development, is only around 50%.

Objective: Against this backdrop, there is an urgency to rapidly enrich the pipeline of vaccine development with novel vaccine candidates that can be discovered by synthesizing and screening a multitude of malaria proteins.

Methods: However, to achieve this objective, we require optimal technologies for high-throughput synthesis of quality malaria proteins. Among the various protein synthesis systems, the wheat germ cell-free protein synthesis system is advantageous and successful to this end.

Results/conclusion: The wheat germ cell-free protein synthesis system is optimal for accelerating the decoding of malaria genome and hence characterization of malaria proteins and discovery of malaria vaccine candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17460440903369813DOI Listing

Publication Analysis

Top Keywords

malaria vaccine
16
wheat germ
12
germ cell-free
12
protein synthesis
12
malaria
9
vaccine development
8
vaccine candidates
8
malaria proteins
8
cell-free protein
8
synthesis system
8

Similar Publications

Large-scale production of infective larvae from engorged .

Front Trop Dis

December 2024

Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.

Background: is transmitted by species and affects hundred millions of inhabitants in about 33 countries in sub-Saharan Africa. It is known that Mansonellosis due to do not result in a clear clinical picture, but down-regulates the immunity of patients predisposing them to other diseases like tuberculosis, HIV and malaria or damping vaccine efficacy. However, research about novel drugs against this filarial nematode is missing because of the lack of parasite material.

View Article and Find Full Text PDF

The global rise of drug-resistant malaria parasites is becoming an increasing threat to public health, emphasizing the urgent need for the development of new therapeutic strategies. Artimisinin- based therapies, once the backbone of malaria treatment, are now at risk due to the resistance developed in parasites. The lack of a universally accessible malaria vaccine exacerbates this crisis, underscoring the need to explore new antimalarial drugs.

View Article and Find Full Text PDF

In tropical countries, malaria transmission is the major health issue. To eradicate malaria, health communities depend on the control measure that affects economy and environment of the countries. To overcome these burdens, there is a great need to develop vaccine against malaria, but there is no vaccine to control malaria effectively.

View Article and Find Full Text PDF

Selection of combination adjuvants for enhanced immunogenicity of a recombinant CelTOS vaccine against Plasmodium falciparum.

Biochem Biophys Res Commun

January 2025

Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran. Electronic address:

Recently, there has been significant interest in developing combination adjuvants to achieve efficient vaccines. However, it remains uncertain which combinations of adjuvants could best enhance the immune response to the recombinant antigen. In the current study, to improve the immunogenicity of Plasmodium falciparum cell traversal protein for ookinetes and sporozoites (PfCelTOS), we tested three different adjuvants: MPL, Poly I:C, and QS-21 alone or in a triple mixture (MPL/Poly I:C/QS-21; MPQ) and a dual mixture (Poly I:C/QS-21; PQ).

View Article and Find Full Text PDF

The clinical development of novel vaccines, injectable therapeutics, and oral chemoprevention drugs has the potential to deliver significant advancements in the prevention of Plasmodium falciparum malaria. These innovations could support regions in accelerating malaria control, transforming existing intervention packages by supplementing interventions with imperfect effectiveness or offering an entirely new tool. However, to layer new medical tools as part of an existing programme, malaria researchers must come to an agreement on the gaps that currently limit the effectiveness of medical interventions for moderate to low transmission settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!