Background: Because cancer is a complex disease, it is unlikely that a single mono functional 'targeted' drug will be effective for treating this most advanced disease. Combined drugs that impact multiple targets simultaneously are better at controlling complex disease systems, are less prone to drug resistance and are the standard of care in cancer treatment. In order to improve the efficiency of using a two-drug cocktail, one approach involves the use of the so-called hybrid drugs, which comprises the incorporation of two drugs in a single molecule with the intention of exerting dual drug action.
Objective: In the present article, we discuss the design, synthesis and various applications of anticancer hybrid agents and the developments in this field during the last few decades. Additionally, we describe different types of linkers and their role in contributing towards biological effects and the in vivo mechanism of drug release. We also depict some challenges from scientific and regulatory perspectives in the hybrid drug development process.
Conclusion: In the era of increasing drug resistance in cancer patients, the discovery of hybrid drugs could provide an effective strategy to create chemical entities likely to be more efficacious and less prone to resistance. However, some technical and regulatory challenges will have to be surmounted before hybrid drugs succeed in the clinical settings and justify the considerable promise of this novel concept.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17460440903341705 | DOI Listing |
Med Chem
January 2025
Department of Pharmacy, Division of Research and Innovation, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India.
Introduction: Heterocyclic derivatives, particularly those containing heteroatoms such as oxygen and nitrogen, represent a significant portion of currently marketed drugs. Among these, the aromatic heterocycle 1,3,4-oxadiazole, characterized by an N=C=O-linkage, stands out due to its remarkable biological activities. These activities include anti-inflammatory, anti-cancer, antioxidant, anti-tubercular, antiviral, anti-diabetic, and antibacterial effects.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
NanotechLab, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
J Pharm Anal
October 2024
National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
Identifying the compound formulae-related xenobiotics in bio-samples is full of challenges. Conventional strategies always exhibit the insufficiencies in overall coverage, analytical efficiency, and degree of automation, and the results highly rely on the personal knowledge and experience. The goal of this work was to establish a software-aided approach, by integrating ultra-high performance liquid chromatography/ion-mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) and in-house high-definition MS library, to enhance the identification of prototypes and metabolites of the compound formulae , taking Sishen formula (SSF) as a template.
View Article and Find Full Text PDFJ Med Chem
January 2025
Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse cedex, France.
To challenge the multidrug resistance of malaria parasites, new hybrid compounds were synthesized and evaluated against laboratory strains and multidrug-resistant clinical isolates. Among these hybrids, emoquine-1 was the most active on proliferative , with IC values in the range of 20-55 nM and a high selectivity index with respect to mammalian cells. This drug retained its activity on several multiresistant field isolates from Cambodia and Guiana, exhibited no cross-resistance to artemisinin, and is also very active against the quiescent stage of the artemisinin-resistant parasites, three features that constitute the gold standard for new antimalarial drugs.
View Article and Find Full Text PDFJ Arthroplasty
January 2025
Hospital Clínic Barcelona, Department of Orthopaedic Surgery and Traumatology. Villarroel, 170. 08036 Barcelona, Spain.
Background: Effective management of postsurgical pain following arthroplasty remains a challenge, lacking a definitive gold standard. As most knee and hip arthroplasties are cemented or hybrid, we used the property of bone cement as a drug carrier and added powdered local anesthetics (lidocaine hydrochloride and bupivacaine hydrochloride) to the polymethylmethacrylate (PMMA) as analgesics. However, the addition of drugs to bone cement may compromise its mechanical properties, necessitating a thorough analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!