The interfacial and temperature behavior of n-decane bound to weakly hydrated nanosilica A-400 (initial, heated, or compacted) or silica gel Si-60 was studied using low-temperature (1)H NMR spectroscopy applied to static samples that allowed us to observe signals only of mobile decane and unfrozen water molecules. For deeper insight into the phenomena studied, interactions of n-decane, 1-decanol, and water with a set of nanosilicas and silica gels were analyzed using DSC and thermoporometry. Both NMR and DSC results demonstrated that during heating of frozen samples at a heating rate of 5 K/min a portion of decane or decanol remained frozen at temperature higher than the freezing point of bulk liquid (Tf). For decane and decanol adsorbed onto silica gels Si-40, Si-60, and Si-100, the number, position, and intensity of freezing and melting peaks observed in the DSC thermograms over the 170-300 K range during cooling and heating of samples depended on the pore size distribution of silicas as well as on the amounts and type of adsorbates. The position of the main freezing peak of decane for all samples was close to Tf because the alkane amount was greater than the pore volume; i.e., a fraction of decane was bulk liquid. According to (1)H NMR data, a portion of decane, which was in a quasi-crystalline solid state characterized by fast molecular exchange (i.e., short transverse relaxation time) and not observed in the spectra, was greater than a portion of decane frozen at temperatures close to Tf during cooling that appears in the DSC endotherms of heated samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la400392h | DOI Listing |
Foods
January 2024
Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
The purpose of this study was to evaluate the effect of temperature and time of sous-vide cooking method on the characteristics of Thoroughbred horse loin. Sliced portions (200 ± 50 g) were cooked by boiling (control) and sous-vide (65 and 70 °C for 12, 18, and 24 h). The samples were analyzed for proximate composition, pH, color, texture, microstructure, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), microbiology, volatile organic compounds (VOCs), nucleotide content, and fatty acids composition.
View Article and Find Full Text PDFLangmuir
July 2023
Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
After having demonstrated their potential in biomedical applications, thermo-responsive block copolymers that are able to self-assemble into nano-objects in response to temperature modifications are becoming more and more appealing in other sectors, such as the oil and gas and lubricant fields. Reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly has been demonstrated as a valuable strategy for producing nano-objects from modular block copolymers in non-polar media, required for the mentioned applications. Although the influence of the nature and size of the thermo-responsive block of these copolymers on the properties of the nano-objects is extensively studied in the literature, the role of the solvophilic block is often neglected.
View Article and Find Full Text PDFSoft Matter
January 2021
Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
The formation of smart emulsions or foams whose stability can be controlled on-demand by switching external parameters is of great interest for basic research and applications. An emerging group of smart stabilizers are microgels, which are nano- and micro-sized, three-dimensional polymer networks that are swollen by a good solvent. In the last decades, the influence of various external stimuli on the two-dimensional phase behavior of microgels at air- and oil-water interfaces has been studied.
View Article and Find Full Text PDFWe imaged the steady state flow of brine and decane in Bentheimer sandstone. We devised an experimental method based on differential imaging to examine how flow rate impacts impact the pore-scale distribution of fluids during coinjection. This allows us to elucidate flow regimes (connected, or breakup of the nonwetting phase pathways) for a range of fractional flows at two capillary numbers, , namely 3.
View Article and Find Full Text PDFMol Pharmacol
December 2015
Oncology R&D (K.F., J.Y., L.E.S., K.A.E., J.R., D.A.H., C.A.B., D.S.S, M.P.D.), Biological Sciences (R.T., G.Z., H.Q., S.C., A.E.C., S.S.), and Chemical Sciences, GlaxoSmithKline Research and Development, Collegeville, Pennsylvania (N.O.C., A.S., W.B., N.C.)
Activation of the inositol-requiring enzyme-1 alpha (IRE1α) protein caused by endoplasmic reticulum stress results in the homodimerization of the N-terminal endoplasmic reticulum luminal domains, autophosphorylation of the cytoplasmic kinase domains, and conformational changes to the cytoplasmic endoribonuclease (RNase) domains, which render them functional and can lead to the splicing of X-box binding protein 1 (XBP 1) mRNA. Herein, we report the first crystal structures of the cytoplasmic portion of a human phosphorylated IRE1α dimer in complex with (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide, a novel, IRE1α-selective kinase inhibitor, and staurosporine, a broad spectrum kinase inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!