A series of N-[9-(ortho-fluorobenzyl)-2-phenyl-8-azapurin-6-yl]-amides were synthesized and tested for their affinity toward A₁, A2A , and A₃ adenosine receptor subtypes. Biological results demonstrated that the introduction of a fluorine atom at the ortho position of the 9-benzyl group generally enhanced affinity toward A₁ subtype and did not significantly affect A2A and A₃ affinity. Very interesting is the compound bearing a meta-fluorophenyl substituent on the carbonyl carbon of the amide group, which shows significantly high A₁/A2A-A₃ selectivity. Compounds of this new series, together with the previously published analogs without the fluorine atom on the 9-benzyl group, constituted the starting dataset for the development of QSAR models. The models obtained were able to rationally describe the affinity trends resulting from biological testing and to enable investigation of the role of different substituents on the 8-azapurine scaffold, as well as the influence of the newly introduced fluorine atom on the benzyl moiety. The said QSAR models can also assist in the design of new compounds selectively active on A₁ adenosine receptors. Furthermore, a molecular docking study was carried out to assess hypothetical binding mode of N-[9-(ortho-fluorobenzyl)-2-phenyl-8-azapurin-6-yl]-amides to A₁ adenosine receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.12131 | DOI Listing |
Adenine nucleotides (ATP, ADP and AMP) play a central role in the regulation of metabolism and energy: they provide the energy balance of the cell, determine its redox state, act as allosteric effectors of a number of enzymes, modulate signaling and transcription factors and activate oxidation or biosynthesis substrates. A large number of methods have been developed to determine the level of ATP, ADP and AMP, but the most universal and effective method for the separation and analysis of complex mixtures is the reversed-phase high-performance liquid chromatography method (RP-HPLC). The aim of this study is to determine the optimal conditions for the qualitative separation and quantitative determination of standard solutions of ATP (1 mmol/l), ADP (0,5 mmol/l) and AMP (0,1 mmol/l) by RP-HPLC.
View Article and Find Full Text PDFBiopolymers
October 2010
Rimstone Laboratory, RLI, 29 Lancaster Way, Cheshire, CT 06410, USA.
Replacement of two to four guanines by adenines in the human telomere DNA repeat dG3(TTAG3)3 did not hinder the formation of quadruplexes if the substitutions took place in the terminal tetrad bridged by the diagonal loop of the intramolecular antiparallel three-tetrad scaffold, as proved by CD and PAGE in both Na+ and K+ solutions. Thermodynamic data showed that, in Na+ solution, the dG3(TTAG3)3 quadruplex was destabilized, the least by the two G:A:G:A tetrads, the most by the G:G:A:A tetrad in which the adenosines replaced syn-guanosines. In physiological K+ solution, the highest destabilization was caused by the 4A tetrad.
View Article and Find Full Text PDFJ Biol Chem
January 2003
Institut für Allgemeine Mikrobiologie, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
Archaea have a eukaryotic type of transcriptional machinery containing homologues of the transcription factors TATA-binding protein (TBP) and TFIIB (TFB) and a pol II type of RNA polymerase, whereas transcriptional regulators identified in archaeal genomes have bacterial counterparts. We describe here a novel regulator of heat shock response, Phr, from the hyperthermophilic archaeon Pyrococcus furiosus that is conserved among Euryarchaeota. The protein specifically inhibited cell-free transcription of its own gene and from promoters of a small heat shock protein, Hsp20, and of an AAA(+) ATPase.
View Article and Find Full Text PDFMol Cell Biol
October 2000
Biotechnology Research Institute, Montreal, Quebec H4P 2R2, Canada.
Cellular stress can trigger a process of self-destruction known as apoptosis. Cells can also respond to stress by adaptive changes that increase their ability to tolerate normally lethal conditions. Expression of the major heat-inducible protein hsp70 protects cells from heat-induced apoptosis.
View Article and Find Full Text PDFThe three RNA trinucleotides; ApApA, ApApG, and ApUpG, have been synthesized in sufficient quantity to obtain natural abundance 13C(1H)-NMR spectra at strand concentrations between 4 and 100 mM. Comparisons between 70 degrees C spectra of the three trimers and their consistuent dimers ApA, ApG, ApU, and UpG allow secure assignments to be made for most of the resonances. This paper describes the syntheses and 13C assignments of the oligomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!