We describe a high-resolution, high-sensitivity negative-tone photoresist technique that relies on bottom-up preassembly of differential polymer components within cylindrical polymer brush architectures that are designed to align vertically on a substrate and allow for top-down single-molecule line-width imaging. By applying cylindrical diblock brush terpolymers (DBTs) with a high degree of control over the synthetic chemistry, we achieved large areas of vertical alignment of the polymers within thin films without the need for supramolecular assembly processes, as required for linear block copolymer lithography. The specially designed chemical compositions and tuned concentric and lengthwise dimensions of the DBTs enabled high-sensitivity electron-beam lithography of patterns with widths of only a few DBTs (sub-30 nm line-width resolution). The high sensitivity of the brush polymer resists further facilitated the generation of latent images without postexposure baking, providing a practical approach for controlling acid reaction/diffusion processes in photolithography.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja3126382DOI Listing

Publication Analysis

Top Keywords

concentric lengthwise
8
brush terpolymers
8
high-resolution high-sensitivity
8
high-sensitivity negative-tone
8
negative-tone photoresist
8
nanoscopic cylindrical
4
cylindrical dual
4
dual concentric
4
lengthwise block
4
brush
4

Similar Publications

We describe a high-resolution, high-sensitivity negative-tone photoresist technique that relies on bottom-up preassembly of differential polymer components within cylindrical polymer brush architectures that are designed to align vertically on a substrate and allow for top-down single-molecule line-width imaging. By applying cylindrical diblock brush terpolymers (DBTs) with a high degree of control over the synthetic chemistry, we achieved large areas of vertical alignment of the polymers within thin films without the need for supramolecular assembly processes, as required for linear block copolymer lithography. The specially designed chemical compositions and tuned concentric and lengthwise dimensions of the DBTs enabled high-sensitivity electron-beam lithography of patterns with widths of only a few DBTs (sub-30 nm line-width resolution).

View Article and Find Full Text PDF

It has been shown that the wall of the plant fiber is probably built up of unit groups of atoms which have assumed the form of a space lattice. The elementary cell of the lattice is an orthorhombic structure with the dimensions 6.10 x 5.

View Article and Find Full Text PDF

X-RAY DIFFRACTION PATTERNS FROM PLANT FIBERS.

J Gen Physiol

November 1925

University of California, Southern Branch, Los Angeles.

The rather long discussion just given seemed necessary in order to establish certain points before attempting to develop the lattice structure and before working out the identity of the structural unit of the ramie fiber. 1. Certain planes, 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!