Basic fibroblast growth factor stimulates endothelial regrowth and proliferation in denuded arteries.

J Clin Invest

University of Washington, School of Medicine, Department of Pathology, Seattle 98195.

Published: June 1990

A large percentage of vascular reconstructions, endarterectomies, and angioplasties fail postoperatively due to thrombosis and restenosis. Many of these failures are thought to result from an inability of the vascular endothelium to adequately regenerate and cover the denuded area. After balloon catheter denudation of the rat carotid artery, regrowth of endothelium ceases after approximately 6 wk, leaving a large area devoid of endothelium. Here we show that this cessation of reendothelialization can be overcome by the systemic administration of basic fibroblast growth factor (bFGF). Administration of 120 micrograms bFGF over an 8-h period caused a highly significant increase in the replication rate of endothelial cells at the leading edge of 38.5 vs. 2.1% in controls, and, when given over a longer period of time (12 micrograms daily for 12 d), resulted in a significant increase in the extent of endothelial outgrowth onto the denuded surface. Furthermore, total regrowth could be achieved within 10 wk after balloon catheter denudation when 12 micrograms bFGF was injected twice per week for a period of 8 wk. Endothelium in unmanipulated arteries responded to bFGF with a significant increase in replication, but no increase in endothelial cell density was observed in these arteries. These data demonstrate that bFGF can act as a potent mitogen for vascular endothelial cells in vivo, and add considerably to our understanding of the mechanism underlying endothelial repair after in vivo vascular injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC296670PMC
http://dx.doi.org/10.1172/JCI114665DOI Listing

Publication Analysis

Top Keywords

basic fibroblast
8
fibroblast growth
8
growth factor
8
balloon catheter
8
catheter denudation
8
micrograms bfgf
8
increase replication
8
endothelial cells
8
endothelial
6
bfgf
5

Similar Publications

Myocardial fibrosis (MF) is a common pathological manifestation of many cardiovascular diseases, such as myocardial infarction, myocardial ischemia, and sudden cardiac death. It is characterized by excessive proliferation and activation of fibroblasts, transformation into myofibroblasts, and, eventually, excessive deposition of the extracellular matrix, resulting in heart damage. Currently, modern drugs such as angiotensin-converting enzyme inhibitors, diuretics, and β-blockers can improve myocardial fibrosis in clinical treatment, but their therapeutic effect on this disease is limited, with obvious side effects and high cost.

View Article and Find Full Text PDF

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Anti-inflammatory coupled anti-angiogenic airway stent effectively suppresses tracheal in-stents restenosis.

J Nanobiotechnology

January 2025

Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.

Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.

View Article and Find Full Text PDF

CT-sensitized nanoprobe for effective early diagnosis and treatment of pulmonary fibrosis.

J Nanobiotechnology

January 2025

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.

Early diagnosis is critical for providing a timely window for effective therapy in pulmonary fibrosis (PF); however, achieving this remains a significant challenge. The distinct honeycombing patterns observed in computed tomography (CT) for the primary diagnosis of PF are typically only visible in patients with moderate to severe disease, often leading to missed opportunities for early intervention. In this study, we developed a nanoprobe designed to accumulate at fibroblastic foci and loaded with the CT sensitizer iodide to enable effective early diagnosis of PF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!