A new analytical approximation for photonic array modes is presented. We consider the specific class of one-dimensional (1D) photonic crystals (encompassing large arrays of coupled identical planar waveguides, large arrays of identical phase-locked lasers, etc.), in which light propagates along the optical axis of the device. Approximate analytical expressions for the array modes (both spatial distribution and propagation constants) become available. This approach allows a fast, simple, and accurate analytical evaluation of the electromagnetic field in 1D photonic crystal devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.52.001743 | DOI Listing |
Sci Rep
January 2025
Department of Physics, Lehigh University, Bethlehem, Pennsylvania, 18015, USA.
Driven quantum materials often feature emergent topology, otherwise absent in static crystals. Dynamic bulk-boundary correspondence, encoded by nondissipative gapless modes residing near the Floquet zone center and/or boundaries, is its most prominent example. Here we show that topologically robust gapless dispersive modes appear along the grain boundaries, embedded in the interior of Floquet topological crystals, when the Floquet-Bloch band inversion occurring at a finite momentum ( ) and the Burgers vector ( ) of the constituting array of dislocations satisfy (modulo ).
View Article and Find Full Text PDFNanoscale Adv
January 2025
School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom.
SPDC photon-pairs exhibit spatial correlations which can be measured using detector arrays sensitive to single photons. However, these detector arrays have multiple readout modes and in order to optimise detection it is important to select the optimum mode to detect the correlations against a background of optical and electronic noise. These quantum correlations enable applications in imaging, sensing, communication, and optical processing.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Mechanical Engineering, North Carolina A & T State University,1601 E. Market Street, Greensboro, NC 27411, USA.
Damage in composite laminates evolves through complex interactions of different failure modes, influenced by load type, environment, and initial damage, such as from transverse impact. This paper investigates damage growth in cross-ply polymeric matrix laminates under tensile load, focusing on three primary failure modes: transverse matrix cracks, delaminations, and fiber breaks in the primary loadbearing 0-degree laminae. Acoustic emission (AE) techniques can monitor and quantify damage in real time, provided the signals from these failure modes can be distinguished.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!