It has been a long-standing goal to precisely measure water-leaving radiance (L(w), or its equivalent property, remote-sensing reflectance) in the field, but reaching this goal is quite a challenge. This is because conventional approaches do not provide a direct measurement of L(w), but rather measure various related components and subsequently derive this core property from these components. Due to many uncontrollable factors in the measurement procedure and imprecise post-measurement processing routines, the resulting L(w) is inherently associated with various levels of uncertainties. Here we present a methodology called the skylight-blocked approach (SBA) to measure L(w) directly in the field, along with results obtained recently in the Laurentian Great Lakes. These results indicate that SBA can measure L(w) in high precision. In particular, there is no limitation of water types for the deployment of SBA, and the requirement of post-measurement processing is minimum; thus high-quality L(w) for a wide range of aquatic environments can be acquired.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.52.001693 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!