The isotopic composition of plutonium ((239)Pu, (240)Pu, (241)Pu and (242)Pu) was investigated in a ∼0.5 m long peat core from an ombrotrophic bog (Black Forest, Germany) using clean room procedures and accelerator mass spectrometry (AMS). This sophisticated analytical approach was ultimately needed to detect reliably the Pu concentrations present in the peat samples at femtogram (fg) and attogram (ag) levels. The mean (240)Pu/(239)Pu isotopic ratio of 0.19 ± 0.02 (N = 32) in the peat layers, representing approximately the last 80 years, was in good agreement with the accepted value of 0.18 for the global fallout in the Northern Hemisphere. This finding is largely supported by the corresponding and rather constant (241)Pu/(239)Pu (0.0012 ± 0.0005) and (242)Pu/(239)Pu (0.004 ± 0.001) ratios. Since the Pu isotopic composition characteristic of the global fallout was also identified in peat samples pre-dating the period of atmospheric atom bomb testing (AD 1956-AD 1980), migration of Pu within the peat profile is clearly indicated. These results highlight, for the first time, the mobility of Pu in a peat bog with implications for the migration of Pu in other acidic, organic rich environments such as forest soils and other wetland types. These findings constitute a direct observation of the behaviour of Pu at fg and ag levels in the environment. The AMS measurements of Pu concentrations (referring to a corresponding activity of (240+239)Pu from 0.07 mBq g(-1) to 5 mBq g(-1)) essentially confirm our a priori estimates based on existing (241)Am and (137)Cs data in the investigated peat core and agree well with the global fallout levels from the literature. Exclusively employing the Pu isotope ratios established for the peat samples, the date of the Pu irradiation (AD 1956, correctable to AD 1964) was calculated and subsequently compared to the (210)Pb age of the peat layers; this comparison provided an additional hint that global fallout derived Pu is not fixed in the peat column, but has migrated downwards along the peat profile to layers preceding the nuclear age.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3em30910jDOI Listing

Publication Analysis

Top Keywords

global fallout
16
peat
12
peat samples
12
239pu 240pu
8
240pu 241pu
8
241pu 242pu
8
femtogram attogram
8
attogram levels
8
peat bog
8
isotopic composition
8

Similar Publications

Excess fine sediment supply and its associated contaminants can have detrimental effects on water quality and river ecology with sediment deposition on, and subsequent infiltration in, streambeds impacting riverine habitats. Fallout radionuclides (FRNs) are used as tracers in aquatic systems, and the Be/Pb ratio is a useful indicator for sediment residence/storage time. Suspended and submerged mid-channel bar sediments were collected during five surveys within a 5 km reach of a typical temperate lowland agricultural river system.

View Article and Find Full Text PDF

Cryoconite is abundant in artificial radionuclides such as plutonium (Pu) and amounts of radioactive contaminants is stored in glaciers. Under global warming and glaciers rapid retreating, glaciers could be a second source for radioactive contaminants and the stored Pu isotopes could be released to the downstream areas through surface runoff. However, the knowledge and understanding on the migration behavior and cycling of Pu isotopes in the ice cap is quite limited.

View Article and Find Full Text PDF

Provenance and sedimentation of Pu and Np in the northern Taiwan Strait suffering intensive land-ocean interaction.

Environ Pollut

November 2024

The Key Laboratory of Coastal and Island Development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China.

Article Synopsis
  • The China Sea faces increased risk of contamination from human-made radionuclides, particularly plutonium (Pu) and neptunium (Np), making it essential to study their origins and movement for safety assessments.
  • This study uses cutting-edge SF-ICP-MS technology to measure Pu and Np levels in sediment cores from the northern Taiwan Strait and East China Sea, confirming their utility as tools for dating geological events.
  • Findings show global fallout and nearby nuclear tests as primary sources of these isotopes, with distinctive behaviors affecting their sediment distribution and environmental mobility, highlighting different preservation in sediments versus water.
View Article and Find Full Text PDF

Cryoconite, granule-shaped debris found on the surface of glaciers, is known for trapping substantial quantities of pollutants such as radioactive nuclides and heavy metals. This study investigates contamination levels, sources and spatial variability of natural and artificial radioisotopes in cryoconite from Mittivakkat Gletsjer in southeast Greenland by determining the activity and atomic ratios of selected radionuclides. The maximum activity concentrations of artificial radioisotopes were 1129 ± 34 Bq kg for Cs, 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!