Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768110PMC
http://dx.doi.org/10.1038/leu.2013.77DOI Listing

Publication Analysis

Top Keywords

powerful molecular
4
molecular synergy
4
synergy mutant
4
mutant nucleophosmin
4
nucleophosmin flt3-itd
4
flt3-itd drives
4
drives acute
4
acute myeloid
4
myeloid leukemia
4
leukemia mice
4

Similar Publications

A variational graph-partitioning approach to modeling protein liquid-liquid phase separation.

Cell Rep Phys Sci

November 2024

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.

Graph neural networks (GNNs) have emerged as powerful tools for representation learning. Their efficacy depends on their having an optimal underlying graph. In many cases, the most relevant information comes from specific subgraphs.

View Article and Find Full Text PDF

Computationally Assisted Noncanonical Amino Acid Incorporation.

ACS Cent Sci

January 2025

The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.

Genetic encoding of noncanonical amino acids (ncAAs) with desired functionalities is an invaluable tool for the study of biological processes and the development of therapeutic drugs. However, existing ncAA incorporation strategies are rather time-consuming and have relatively low success rates. Here, we develop a virtual ncAA screener based on the analysis and modeling of the chemical properties of all reported ncAA substrates to virtually determine the recognition potential of candidate ncAAs.

View Article and Find Full Text PDF

Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.

View Article and Find Full Text PDF

The Proximal Protonation Source in Cu-NHx-C Single Atom Catalysts Selectively Boosts CO2 to Methane Electroreduction.

Angew Chem Int Ed Engl

January 2025

Peking University Shenzhen Graduate School, Shool of Chemical Biology and Biotechnology, Lishui Road, Nanshan District, -, Shenzhen, CHINA.

Regulating the coordination environment of active sites has proved powerful for tapping into their catalytic activity and selectivity in homogeneous catalysis, yet the heterogeneous nature of copper single-atom catalysts (SACs) makes it challenging. This work reports a bottom-up approach to construct a SAC (rGO@Cu-N(Hx)-C) by inlaying preformed amine coordinated Cu2+ units into reduced graphene oxide (rGO), permitting molecular level revelation on how the proximal N-site functional groups (N-H or N-CH3) impact on the carbon dioxide reduction reaction (CO2RR). It is demonstrated that the N-H moiety of rGO@Cu-NHx-C can serve as an in-situ protonation agent to accelerate the CO2-to-methane reduction kinetics, delivering a methane current density (163 mA/cm2) 2.

View Article and Find Full Text PDF

Beyond directed evolution, ancestral sequence reconstruction (ASR) has emerged as a powerful strategy for engineering proteins with superior functional properties. Herein, we harnessed ASR to uncover robust PET hydrolase variants, expanding the repertoire of PET-degrading enzymes and providing deeper insights into the underlying mechanisms of PET hydrolysis. As a result, ASR1-PETase, featuring a unique cysteine catalytic site, was discovered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!