Synonymous single nucleotide polymorphisms (SNPs) within a transcript's coding region produce no change in the amino acid sequence of the protein product and are therefore intuitively assumed to have a neutral effect on protein function. We report that two common variants of high-temperature requirement A1 (HTRA1) that increase the inherited risk of neovascular age-related macular degeneration (NvAMD) harbor synonymous SNPs within exon 1 of HTRA1 that convert common codons for Ala34 and Gly36 to less frequently used codons. The frequent-to-rare codon conversion reduced the mRNA translation rate and appeared to compromise HtrA1's conformation and function. The protein product generated from the SNP-containing cDNA displayed enhanced susceptibility to proteolysis and a reduced affinity for an anti-HtrA1 antibody. The NvAMD-associated synonymous polymorphisms lie within HtrA1's putative insulin-like growth factor 1 (IGF-1) binding domain. They reduced HtrA1's abilities to associate with IGF-1 and to ameliorate IGF-1-stimulated signaling events and cellular responses. These observations highlight the relevance of synonymous codon usage to protein function and implicate homeostatic protein quality control mechanisms that may go awry in NvAMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647976 | PMC |
http://dx.doi.org/10.1128/MCB.01283-12 | DOI Listing |
JAMA Ophthalmol
January 2025
Doheny Eye Institute, Pasadena, California.
Drug Deliv Transl Res
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
Age-related macular degeneration (AMD) is one of the leading causes of central vision loss in the elderly population. Bevacizumab, a full-length humanized monoclonal anti-VEGF antibody, is commonly used off-label drug to treat AMD. However, the dosing regimen of bevacizumab and other anti-VEGF antibodies requires monthly intravitreal injections followed by regular intravitreal injections at 4-16-week intervals.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.
View Article and Find Full Text PDFOphthalmol Sci
November 2024
A2-Ai, Ann Arbor, Michigan.
Objective: To develop a population pharmacokinetic (PK) model to characterize serum pegcetacoplan concentration-time data after intravitreal administration in patients with geographic atrophy (GA) or neovascular age-related macular degeneration (nAMD).
Design: Pharmacokinetic modeling.
Participants: Two hundred sixty-one patients with GA or nAMD enrolled in 4 clinical studies of pegcetacoplan.
BMC Ophthalmol
January 2025
Department of Vitreoretina, Akhand Jyoti Eye Hospital, Mastichak, Saran, Bihar, India.
Purpose: To compare the anatomical and visual outcomes in eyes with submacular hemorrhage (SMH) treated with a combination of ranibizumab (RBZ) either innovator or biosimilar (Razumab) and intravitreal perfluoropropane gas (CF).
Methods: Treatment naïve neovascular age related macular degeneration (n-AMD) patients with SMH were retrospectively analyzed. Patients received either innovator or biosimilar RBZ (3 loading doses followed by pro re nata regimen) and single injection of intravitreal CF.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!