Plasmodium parasites infect the liver and replicate inside hepatocytes before they invade erythrocytes and trigger clinical malaria. Analysis of host signaling pathways affected by liver-stage infection could provide critical insights into host-pathogen interactions and reveal targets for intervention. Using protein lysate microarrays, we found that Plasmodium yoelii rodent malaria parasites perturb hepatocyte regulatory pathways involved in cell survival, proliferation, and autophagy. Notably, the prodeath protein p53 was substantially decreased in infected hepatocytes, suggesting that it could be targeted by the parasite to foster survival. Indeed, mice that express increased levels of p53 showed reduced liver-stage parasite burden, whereas p53 knockout mice suffered increased liver-stage burden. Furthermore, boosting p53 levels with the use of the small molecule Nutlin-3 dramatically reduced liver-stage burden in vitro and in vivo. We conclude that perturbation of the hepatocyte p53 pathway critically impacts parasite survival. Thus, host pathways might constitute potential targets for host-based antimalarial prophylaxis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619000PMC
http://dx.doi.org/10.1016/j.celrep.2013.02.010DOI Listing

Publication Analysis

Top Keywords

liver-stage infection
8
reduced liver-stage
8
liver-stage burden
8
p53
6
liver-stage
5
suppression host
4
host p53
4
p53 critical
4
critical plasmodium
4
plasmodium liver-stage
4

Similar Publications

Targeting T-Cell Activation for Malaria Immunotherapy: Scoping Review.

Pathogens

January 2025

Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.

Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells.

View Article and Find Full Text PDF

Quantifying Plasmodium vivax radical cure efficacy: a modelling study integrating clinical trial data and transmission dynamics.

Lancet Infect Dis

January 2025

Institut Pasteur, Université Paris Cité, G5 Épidémiologie et Analyse des Maladies Infectieuses, Paris, France. Electronic address:

Background: Plasmodium vivax forms dormant liver stages (hypnozoites) that can reactivate weeks to months after primary infection. Radical cure requires a combination of antimalarial drugs to kill both the blood-stage and liver-stage parasites. Hypnozoiticidal efficacy of the liver-stage drugs primaquine and tafenoquine cannot be estimated directly because hypnozoites are undetectable.

View Article and Find Full Text PDF

Modified dosing schedule efficacy of fosmidomycin and clindamycin against murine malaria Plasmodium berghei.

Int J Parasitol Drugs Drug Resist

December 2024

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21210, USA. Electronic address:

Fosmidomycin and clindamycin target the Plasmodium apicoplast. Combination clinical trials have produced mixed results with the primary problem being the recrudescent infection frequency by day 28. Given that antibiotic efficacy against bacterial infections often depends on the constant drug presence over several days, we hypothesized that the antimalarial blood or liver stage efficacy of fosmidomycin and clindamycin could be improved by implementing a more frequent dosing schedule.

View Article and Find Full Text PDF

Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.

View Article and Find Full Text PDF

Characterization of serological responses to Plasmodium falciparum (Pf) is of interest to understand disease burden and transmission dynamics; however, their interpretation is challenging. Dried blood spots from 30,815 participants aged 6 months to 15 years from the 2018 Nigeria HIV/AIDS Indicator and Impact Survey were analyzed by multiplex bead-based assay to measure immunoglobulin G (IgG) to Pf-stage-specific MSP-1, AMA-1, GLURPR0, LSA-1, and CSP. These IgG levels were analyzed by principal component analysis (PCA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!