Background Aims: Synovium-derived mesenchymal stromal cells (S-MSCs) have potential utility in clinical joint repair applications. However, their scarcity in tissues means S-MSCs cannot be isolated in large quantities and need to be expanded in culture. Because synovial tissues in vivo are exposed to higher calcium (Ca(2+)) levels than typically found in culture media, this study examined the impact of Ca(2+) supplementation on the rate of S-MSC proliferation in culture.
Methods: S-MSCs were serially cultured with or without Ca(2+) supplementation. The effect of inhibiting Ca(2+) uptake was assessed using Ca(2+) channel blockers. After extended exposure to elevated Ca(2+) concentrations, S-MSCs were characterized by evaluating surface marker profiles, performing reverse transcriptase quantitative polymerase chain reaction and carrying out tri-lineage differentiation assays.
Results: Elevated Ca(2+) concentrations resulted in enhanced S-MSC proliferation. Peak growth occurred at 5.0 mmol/L Ca(2+), with an average fold increase of 4.52 ± 0.65 per passage over 8 passages compared with 2.03 ± 0.46 in un-supplemented medium. Proliferation was inhibited by Ca(2+) channel blockers. Ca(2+)-supplemented cells showed enhanced capacity toward osteogenesis (17.82 ± 4.21 μg Ca(2+) deposited/sample vs. 12.70 ± 2.11 μg Ca(2+) deposited/sample) and adipogenesis (0.47 ± 0.04 mg oil red O/sample vs. 0.352 ± 0.005 mg oil red O/sample) and retained their capacity to undergo chondrogenesis (1.37 ± 0.07 μg glycosaminoglycan/pellet vs. 1.33 ± 0.17 μg glycosaminoglycan/pellet). S-MSCs cultured in elevated Ca(2+) expressed enhanced messenger RNA levels for SOX-9 and peroxisome proliferator activated receptor gamma and depressed levels for collagen I.
Conclusions: S-MSC sensitivity to Ca(2+) has not been reported previously. These findings indicate that S-MSC population expansion rates may be up-regulated by Ca(2+) supplementation without compromising defining cell characteristics. This study exemplifies the need to consider medium composition when culturing stem cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcyt.2013.01.011 | DOI Listing |
Reprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFJ Cardiovasc Transl Res
January 2025
Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China. Electronic address:
Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.
View Article and Find Full Text PDFProtein Expr Purif
January 2025
Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:
Dectin-1 (CLEC7A), a C-type lectin-like receptor that recognizes β-1,3 glucans, has a key role in the innate immune system. While the lectin domain of mouse Dectin-1 has been solubilized and refolded from inclusion bodies in Escherichia coli, similar refolding of the human Dectin-1 lectin domain is hindered by the formation of misfolded multimers with aberrant intermolecular disulfide bonds. The aim of this study was to develop a method for the large-scale production of the human Dectin-1 lectin domain.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA. Electronic address:
Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!